

Innovation for Cool Earth Forum 11th Annual Meeting October 9, 2024, The Westin Tokyo, Japan

Carbon Dioxide Removal by Using Direct Air Capture and Other Technologies

Hidetaka Yamada

- Roles of carbon dioxide removal (CDR)
- CDR technologies and their readiness levels, costs and potentials
- Global trends regarding direct air capture (DAC)
- Challenges, problems and risks in CDR deployment

Roles of CDR in Global or National Mitigation Strategies

Intergovernmental panel on climate change (IPCC), Climate change 2022: Mitigation of climate change (2022)

Global CO₂ Capture by Source in IEA Net Zero Emissions Scenario

Net Zero by 2050 (2021)

Taxonomy of CDR Technologies

Minx et al, Environ Res Lett **13** 063001 (2018)

Nature-based solutions: Afforestation/Reforestation, Blue carbon management

Photosynthesis

Chemistry

Capture via:

- Engineering-based solutions: DACCS, BECCS
- Hybrid solutions: Biochar, EW

Technology Readiness Level (TRL), Cost and Mitigation Potential of CDR Method

2020-2100 cumulative volumes

across the scenarios limiting warming to BE 2°C or below

- AFOLU (Agriculture, Forestry and Other Land Use): 20–418 Gton-CO₂
- ➢ BECCS: 168−763 Gt-CO₂
- DACCS: 0–339 Gt-CO₂

Monitoring, reporting, and verification

- need developments of reliablesystem
- clear and easy for DACCS

CDR method	TRL	Cost (\$/ton-CO ₂)	Mitigation potential (Gton-CO ₂ /y)
Afforestation/ Reforestation	8-9	0-240	0.5-10
Soil carbon sequestration	8-9	-45-100	0.6-9.3
Biochar	6-7	10-345	0.3-6.6
BECCS	5-6	15-400	0.5-11
DACCS	6	100-300	5-40
Enhanced weathering	3-4	50-200	2-4
Ocean Fertilization	1-2	50-500	1-3
Ocean alkalinity enhancement	1-2	40-260	1-100
Blue carbon Management	2-3	-	<1

IPCC, Climate change 2022: Mitigation of climate change (2022)

DAC's Start-up Leaders/Global Trends

Carbon Engineering (since 2009)

- ✓ absorbs CO_2 to form $CaCO_3$
- ✓ calcines CaCO₃ at ~900°C
- ✓ 5-8 GJ/ton-CO₂ heat and 1-2 GJ/ton-CO₂ electricity
- ✓ 0.2 km² for 1 Mton/y plant
- ✓ 1-7 ton water use per ton-CO₂ capture
- $\checkmark\,$ commercial operation in ~2025 at ~0.5 Mton/y

Climeworks (since 2009)

- ✓ regenerates adsorbents at ~100°C
- ✓ 3-6 GJ/ton-CO₂ heat and 1 GJ/ton-CO₂ electricity
- \checkmark reaching Mton removal capacity by 2030

https://carbonengineering. com https://climeworks.com

https://climeworks.com https://www.meti.go.jp

Orca: the world's largest capacity $(4,000 \text{ ton-CO}_2/\text{y})$ plant in Iceland

CDR/DAC Purchasers

 Microsoft, Airbus, Amazon, NextGen, Shopify, JP Morgan, Google, ANA

<u>U. S</u>

- ✓ launched Carbon Negative Shot in 2021
- ✓ developing 4 regional DAC hubs
- \checkmark tax credit up to USD 180/ton-CO₂ for DACCS

<u>Japan</u>

✓ Moon shot R&D program

- promoting challenging DAC projects
- demonstration at Expo 2025 Osaka-Kansai
- ✓ Kawasaki Heavy Industries plans to demonstrate ~20,000 ton-CO₂/y in ~2025
- ✓ Minister of Economy, Trade and Industry
- established Committee for Creation of Negative
 Emissions Market in 2023
- developed DAC methodology for calculating removal amount in 2024

Challenges, Problems and Risks in CDR Deployment

- Cost and energy requirements biggest obstacle: <u>need for technological innovation</u>
- Need to scale up faster than ever before: <u>unprecedented scale-ups after 2025</u>
- Concerns regarding biodiversity and other natural conservation: <u>difficulty to gain public acceptance</u>
- Moral hazard/Mitigation deterrence: <u>CDR may delay CO₂ emission reductions,</u> <u>which may delay CDR deployment</u>

Thank you!

Hidetaka Yamada hidetaka.yamada@staff.kanazawa-u.ac.jp

