Powering a CARBON-FREE Future,

Together with i-SMR & SMART NET ZERO CITY

10. October, 2024

Ho Cheol Shin, A Head of KHNP Central Research Institute

I. Introduction – Overview of KHNP

KHNP

I. Introduction – Energy Trends

Global Trends in Energy Sector

"Cutting-edge digital technologies"

SMR "Lowest carbon footprint"

"Small independent grid"

I. Introduction – Chanllenges of Large NPP

Challenges of Large Scale NPPs

SMR has Strength that conventional (large) NPPs doesn't have

Advantages of SMR		Advantages of SMR
	Safety	 Effective in alleviating accidents due to its inherent safety characteristics Reduced radioactive release due to small number of nuclear fuel bundles
	Economics	 Reduced initial investment Reduced construction delay risk by factory manufacturing and equipment modularization
	Flexibility	 Applicable to smaller power grids Easy control to supplement renewable energy intermittency Ease to overcome siting constraints Suitable for wide application (desalination, process heat, hydrogen)

Reference

- 13th INPRO Dialogue Forum "Small Modular Reactors Update on International Technology Development Activities"
- OECD NEA 2021 "Small Modular Reactors: Challenges and Opportunities"

I. Introduction – SMR Development Status

Over 80 types of SMRs under developed Worldwide

3 Major Goals : Higher Safety, Economic Feasibility, Flexibility

Higher Safety (1/2)

Integral Reactor Design

- Integrating main equipment into RCS
- No large pipe : LB-LOCA elimination
- IV-CEDM : Preventing rod ejection accident

Fully Passive Safety System Design

- Passive safety system with natural circulation
- Safety system without safety-class Electric power
- Station Blackout response time : \geq 72 hours

CDF (Core Damage Frequency)

1,000 times higher safety than large NPPs

Higher Safety (2/2)

Underground reactor building

- Seismic Design 0.5g
- Underground reactor
- Seismic design of major equipment
- Aircraft crash protection

Reduction of radioactive leakage

- Small reactor
- Low accident probability
- Steel containment

EPZ within the site boundary

While large NPPs need EPZ of 20~30km radius, SMR can be installed near cities, residential/remote areas

8

Economic Feasibility

Reduction in construction volume

- Design simplification of system
- Multiple modules in a single reactor building

Modularization and factory manufacturing

- Design optimization for inland transportation
- Reduced construction time and cost with innovative technologies

Significant reduction in operators

- 3 operators in one integrated MCR for multiple modules
- Autonomous/Automatic operation and operate support system
- Predictive/preventive maintenance

9

Flexibility

Multipurpose utilization

- · Replacement of aging coal-fired power plant
- Distributed power supply
- Hydrogen production (HTSE)
- Process heat, district heat, desalination, etc.

Harmonization with Renewable Energy

- Easy flexible operation by Load following operation
- Carbon-free auxiliary power is required to complement
 intermittent of renewable energy

III. Future Plan

Future Plan

IV. SSNC(i-SMR Smart Net-zero City)

Combining i-SMR & Smart city to materialize advantages and visualize model

→ Carbon-neutral city design & Feasibility evaluation centered on i-SMR

i-SMR Smart Net-zero City "SSNC" Vision

V. Conclusion and Suggestion

1. Sustainable Energy Solutions for CARBON NEUTRALITY

i-SMR & SSNC

2. What should we do to accelerate the commercialization of SMR?

1) Need to build efficient regulations framework

2) Need to expand various non-electric applications

Thank You for your listening

mall Modular Re

Korea Hydro & Nuclear Power Co., Ltd.