Technology Session "Nuclear Power as a Power Source for Decarbonization"

H₂ production with superior-safety nuclear reactor

Organization

Japan Atomic Energy Agency (JAEA)

Launched time 1998

- Small particle fuels have high ability to trap radioactive materials
- •Core melting must not occur due to its **high heat resistance** temperature
- Potentially, hydrogen explosion does not occur because of no water (hydrogen source)

Overview

- HTGR (High-temperature gas-cooled reactor) shuts down and cools core in case of the blackout accident without any equipment or operator actions
- HTGR can supply up to 950°C of heat, witch can be used for various applications such as H₂ Production, high efficient power generation
- IS process (thermochemical water-splitting H₂ production) can directly harness the heat from HTGR, which offers a large hydrogen supply and maximum energy security

Carbon-free H₂ production under development in Japan Atomic Energy Agency

·IS process can decomposes H_2O using chemical reactions suitable for HTGR

 $\cdot\,\text{No}\,\text{CO}_2$ is produced because heat is supplied by HTGR

Technology Session "Nuclear Power as a Power Source for Decarbonization"

H₂ production with superior-safety nuclear reactor

Barriers on developing the innovation

• HTGR

Conforming to new regulatory with enhanced safety requirements for restarting HTTR to contribute the carbon neutrality

technologies constructed by JAEA

IS process

Developing chemical reactors that can withstand hightemperature corrosive process environments. Solving corrosive fluid leakage due to equipment corrosion and pump malfunction caused by solidification of iodine

Success factors to overcome the above barriers

• HTGR

Since Nuclear Regulation Authority of Japan concluded that significant core degradation including core melting would not occur, HTTR restarted without significant additional reinforcements

IS process

Developed chemical reactors from various heat-resistant corrosion-resistant materials. Improved quality control of corrosion resistant equipment manufacturing and the pump to prevent the solidification. Hydrogen production (30 L/h, 150 h) was successfully accomplished

Future action plan

• Issue

Since CO₂ emissions from the industrial sector such as steelmaking account for about 25% of the total emissions in Japan, large-scale /economical hydrogen supply are required* for the hydrogen-reduction steelmaking currently under development

Plans* for 2050 carbon neutrality in nuclear energy sector

~2030		~2040	~2050
Demonstration tests of inherent safe characteristics using HTTR	(a) Technology development necessary for carbon-free hydrogen	Demonstration of coupling between carbon-free hydrogen production plant and HTGR	Cost reduction by expansion of
(b) Establishment of carbon-free hydrogen production technology using high-temperature heat		Demonstration necessary for practical scale	market and mass production

*Source: Website of METI

• JAEA's efforts to solve the above issues

(a) Developing connection technologies which have heat source and hydrogen production facility secured

Conceptual drawing of HTTR-heat utilization test

(b) Making the prospect of technological feasibility of carbonfree hydrogen production methods

Hydrogen production test apparatus of IS process

