ICEF 2022 9th Annual Meeting

October 5, 2022 Siva Gunda, Vice Chair, California Energy Commission

California is Implementing Ambitious Climate Goals

• Carbon Neutrality for our diverse population no later than 2045

Electric Grid Planning

- 100% Clean Electricity by 2045
- 90% Clean Electricity by 2040
- 90% Clean Electricity by 2035

Progress to 100% Clean Electricity

California

Clean Electricity Resources

Projected to increase annual costs 6% above a 60% RPS baseline

- * Includes in-state
- ** Includes in-state and out of state capacity
- * New hydro and nuclear resources were not candidate technologies for this round of modeling and could not be selected

Q ¥ Ø

Achieving 100% Clean Electricity in California

	Solar (Utility-Scale)	 12.5
	Solar (Customer)	 8.0
	Storage (Battery)	 0.2
(+ , f -)	Storage (Long Duration)	 3.7
	Wind (Onshore)	 6.0
	Wind (Offshore)	 0
	Geothermal	 2.7
	Biomass	 1.3
	Hydrogen Fuel Cells	 0
	Hydro (Large)	 12.3
	Hydro (Small)	 1.8
	Nuclear	 2.4

Existing Reso	urces	Projected New Resources			
 2019*		2030**		2045**	
 12.5 GW		16.9 GW		69.4 GW	
 8.0 GW		12.5 GW		28.2 GW	
 0.2 GW		9.5 GW		48.8 GW	
 3.7 GW		0.9 GW		4.0 GW	
 6.0 GW		8.2 GW		12.6 GW	
 0 GW		0 GW		10.0 GW	
 2.7 GW		0 GW		0.1 GW	
 1.3 GW		0 GW		0 GW	
 0 GW		0 GW		0 GW	
 12.3 GW		N/A †		N/A †	
 1.8 GW		N/A †		N/A †	
 2.4 GW		N/A †		N/A †	

A More Extreme Climate

Climate Risks to Reliability

Power Plants are Disproportionately Located in Disadvantaged Communities

Distribution of plants by CalEnviroScreen percentile

- Prioritization of Retirement of Fossil fleet in Disadvantaged and highly burdened communities
- Acceleration of electrification and improvement of air and water quality
- Expand and accelerate demand side opportunities

Source: PSE Healthy Energy California Power Map

Flex Alert Performance over the Past Two Years

2020

395-2300MW (Higher Range with GO Communication in September)

2021

June			July		August Septembe		ember
Date	Conservation		Date	Conservation		Dete	O
			July 9 th , 2021	None Observed		Date	Conservation
June 17 th , 2021	85-735 MWs		July 9 , 2021	None Observed	No-Flex Alerts	8-Sep-21	0-120MW
June 18 th , 2021	77-413 MWs		July 10 th , 2021	18-190 MWs		9-Sep-21	40-650MW
I			July 12 th , 2021	380-940 MWs	×		
		_	July 28 th , 2021	0-100 MWs			
					GO Communica	tion	

Demand Flexibility is Critical to Reliability

CAISO experienced a system peak of ~52,000 MW

On track for a peak of ~53,000 before demand side load reductions

Hour-ahead forecast • Demand

Day-ahead net forecast • Net demand

Demand response event

Key Questions

- How to transition from voluntary appeals to dependable and sustainable long-term solutions?
- How to value the contribution of demand response to reliability and compensate it appropriately?
- How to transition demand response from behavior change to a lifestyle change? What is the role of automation?