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PREFACE 
The first ICEF Artificial Intelligence for Climate Change Mitigation Roadmap was released in 
December 2023. Since that time, attention to artificial intelligence (AI) has continued to grow at a 
rapid pace. Tens of billions of dollars have poured into AI projects, policymakers around the world 
have considered new AI policies, and OpenAI reports that each month more than 200 million people 
now use ChatGPT.  

Signs of a changing climate continue to grow as well. Based on global average temperatures, July 22, 
2024 was the warmest day ever recorded; 2023 was the warmest year ever recorded; and the 10 
warmest years on record are the past 10 years. Yet global emissions of greenhouse gases continue to 
climb. 

Can AI help cut emissions of greenhouse gases? This Roadmap explores that question. In this second 
edition of the Artificial Intelligence for Climate Change Mitigation Roadmap, a team of 25 co-authors 
builds on last year’s roadmap—comprehensively updating all old chapters, adding six new chapters 
and offering 5–10 specific, actionable recommendations in each chapter. 

Our goal is to provide a useful resource for experts and non-experts alike. In Part I of this Roadmap, 
we provide brief introductions to both AI and climate change. In Part II, we explore eight sectors in 
which AI is helping respond to climate change and could do much more. In Part III, we explore cross-
cutting issues. We close with findings and recommendations. 

This roadmap builds on the body of literature produced annually in connection with the ICEF 
conference. Previous roadmaps have addressed the following topics: 

• Artificial Intelligence for Climate Change Mitigation (2023)

• Low-Carbon Ammonia (2022)

• Blue Carbon (2022)

• Carbon Mineralization (2021)

• Biomass Carbon Removal and Storage (BiCRS) (2020)

• Industrial Heat Decarbonization (2019)

• Direct Air Capture (2018)

• Carbon Dioxide Utilization (2017 and 2016)

• Energy Storage (2017)

• Zero Energy Buildings (2016)

• Solar and Storage (2015)

https://www.icef.go.jp/wp-content/uploads/2024/02/AI-Climate-Roadmap-ICEF-Dec-1-2023.pdf
https://www.icef.go.jp/pdf/summary/roadmap/icef2022_roadmap_Low-Carbon_Ammonia.pdf
https://www.icef.go.jp/pdf/summary/roadmap/icef2022_roadmap_Blue_Carbon.pdf
https://www.icef.go.jp/pdf/summary/roadmap/icef2021_roadmap.pdf
http://www.icef.go.jp/pdf/2020/roadmap/roadmap.pdf
https://www.icef-forum.org/pdf/2019/roadmap/ICEF_Roadmap_201912.pdf
https://www.icef-forum.org/pdf/2018/roadmap/ICEF2018_DAC_Roadmap_20181210.pdf
https://www.icef-forum.org/pdf/2018/roadmap/CO2U_Roadmap_ICEF2017.pdf
https://www.icef-forum.org/pdf/2018/roadmap/Energy_Storage_Roadmap_ICEF2017.pdf
https://www.icef-forum.org/pdf/2018/roadmap/ZEBZEH_Roadmap_ICEF2016.pdf
https://www.icef-forum.org/pdf/2018/roadmap/distributed_solar_and_storage-icef_roadmap_1.0.pdf
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This roadmap is a team effort. We are grateful to the many experts who reviewed draft chapters 
and/or helped with research for this Roadmap in the past six months. Special thanks to Laura Cozzi, 
Antonia Gawel, Savannah Goodman, Mars Hanna, Nicole Iseppi, Noah Kauffman, Meg King, Cheryl 
Lafleur, Amy Luers, Matthew Lundgren, Priyanka Mahat, Ning Qi, Josh Parker, David Patterson, 
Nicolas Schunck, James Slider, Thomas Spencer, Jed Sundwall and Tess Turner. Any mistakes are of 
course our own. We are especially grateful for the support provided by the ICEF Secretariat, the ICEF 
Steering Committee (including in particular its chair, Nobuo Tanaka), the New Energy and Industrial 
Technology Development Organization (NEDO), experts at the Institute of Energy Economics – Japan, 
and our superb copy edit and design team (including in particular Dr. Kathryn Lindl, Ms. Janelle 
Cataldo and Ms. Jeannette Yusko).  

The ICEF Innovation Roadmap Project aims to contribute to the global dialogue about solutions to 
the challenge of climate change. We welcome your thoughts, reactions and suggestions. 

David Sandalow 

Columbia University 
Chair, ICEF Innovation Roadmap Project 
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Five Key Takeaways 

FIVE KEY TAKEAWAYS 
This second edition of the Artificial Intelligence for Climate Change Mitigation Roadmap explores 

many topics in considerable detail. For those of you interested in a quick summary of our main 

messages, here are five. 

1. Artificial intelligence (AI) has the potential to make very significant contributions to climate

change mitigation in the years ahead. This includes incremental gains (such as increasing

output at solar farms and improving energy efficiency in buildings) and transformational

gains (such as helping discover important new materials for clean energy technologies).

2. Greenhouse gas (GHG) emissions from computing operations for AI are less than 1%—and

perhaps much less than 1%—of global GHG emissions. These emissions will very likely

increase in the years ahead, in amounts that could be modest or significant.

3. The main barriers to realizing AI’s potential to help reduce GHG emissions are lack of data

and lack of trained personnel. Governments, companies and educational institutions should

work together to overcome these barriers.

4. Trust in AI systems is essential for AI to deliver substantial benefits for climate change

mitigation. For AI to be trustworthy and trusted, risks related to bias, privacy, misinformation,

disinformation, safety, security and other issues must be addressed.

5. Every organization with a role in climate change mitigation should consider opportunities for

AI to contribute to its work.

The 17 chapters and 334 pages of this Roadmap explore these topics and others, discussing current 

applications of AI in reducing GHG emissions, future possibilities, risks, barriers, policy options and 

other topics, noting the limits of current knowledge. We hope the Roadmap is a useful resource for 

you. 
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Executive Summary - 1 

EXECUTIVE SUMMARY 
PART I – INTRODUCTION 
Chapter 1 – INTRODUCTION TO ARTIFICIAL INTELLIGENCE (AI) 
Artificial intelligence (AI) is the science of making computers perform complex tasks typically 
associated with human intelligence. Modern AI relies on machine learning (ML)—a type of software 
in which algorithms detect patterns from large data sets without being explicitly programmed. This 
differs from traditional software, which requires explicit programming of domain knowledge. AI 
instead relies on implicit programming by using historical data and simulations to train models to 
extract patterns. 

AI has far-reaching capabilities. It can detect patterns, make forecasts, optimize systems and 
simulate what-if scenarios. Access to large, high-quality data sets is important for complex real-world 
applications of AI. These data can come from various public and private sector organizations. 
Tabular, time series, geospatial and text data are all commonly used in AI. Data must be properly 
measured, digitized and accessible to enable effective AI applications. 

The release of ChatGPT in November 2022 generated extraordinary public attention to AI. ChatGPT 
quickly became the most rapidly adopted product in human history. Large language models (LLMs), 
like ChatGPT, demand significant amounts of energy to train and use. In contrast, not all AI systems 
are as resource-intensive, with many being efficient to deploy at scale. 

Chapter 2 – INTRODUCTION TO CLIMATE CHANGE 
Atmospheric concentrations of heat-trapping gases are now higher than at any time in human 
history. This is changing the Earth’s climate. July 22, 2024 was the hottest day ever recorded; 2023 
was the warmest year ever recorded; and the 10 warmest years on record are the last 10 years. 
Severe storms, droughts, floods and wildfires—all made more likely by global warming—have caused 
extraordinary damage in recent years. Sea-level rise threatens coastal cities around the world.  

The Paris Agreement—adopted by over 190 nations in 2015—calls for holding the global average 
temperature increase to well below 2 °C (3.6 °F) above pre-industrial levels and pursuing efforts to 
limit the increase to 1.5 °C (2.7 °F). The world is not on a path to achieve these goals. Policies 
currently in place would result in a global average temperature increase of roughly 3 °C (5.4 °F) by 
2100, and many of these policies are not being fully implemented.  

AI is making important contributions to scientific understanding of climate change. AI is improving 
climate-model performance, providing more advanced warning of extreme weather events and 
helping attribute extreme weather events to the increase in heat-trapping gases in the atmosphere. 
AI’s contributions to climate science will grow in the years ahead. 
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PART II – SECTORS 
Chapter 3 – POWER SYSTEM 
In 2023, carbon dioxide (CO2) emissions from the power sector were roughly 28% of greenhouse gas 
(GHG) emissions globally. Most strategies for deep decarbonization foresee growing reliance on the 
power sector as vehicles, industry, space heating and other sectors shift from fossil fuels to 
electricity. To achieve global climate change goals, the power sector must grow and decarbonize at 
the same time. 

AI is a key tool in addressing these challenges. At solar and wind power plants, for example, AI can 
help improve siting decisions, speed permitting and increase output with better weather forecasting. 
On long-distance transmission lines, AI can increase capacity with dynamic line rating. Virtual power 
plants and demand response programs are starting to rely heavily on AI tools. AI can accelerate 
innovations in battery chemistry, optimize battery usage and support vehicle-to-grid systems. In all 
these areas and more, AI’s potential to help reduce greenhouse gas (GHG) emissions from the power 
sector is significant. 

However, barriers including inaccessible data, lack of trained personnel and poor market design 
could hinder progress. Safety and security risks require priority attention. Data center power demand 
is growing faster than low-carbon power sources in some regions. Collaboration between 
governments, regulators and the private sector will be essential to realize AI’s significant potential to 
contribute to power sector decarbonization. 

Chapter 4 – FOOD SYSTEM 
Food systems—including food production, processing, distribution, consumption and disposal—are 
critical to health and livelihood worldwide. Food systems are responsible for more than 30% of global 
GHG emissions. Climate change, in turn, poses substantial risks to food systems, threatening 
agricultural productivity, food security and supply chain stability. 

AI has significant potential to help reduce GHG emissions from food systems, while enhancing 
resilience. Key AI application areas include remote sensing for agricultural monitoring, modeling to 
optimize farm management decisions and accelerated breeding programs for climate-resilient crops. 
However, significant challenges persist, such as limitations in model interpretability and 
transferability, data biases and the risk of exacerbating existing inequalities in food systems. 

To promote responsible AI deployment, AI guardrails (e.g., human-in-the-loop model improvement) 
and AI accelerators (e.g., collaborative data ecosystems) are both needed. Steps that would help AI 
reduce GHG emissions from the food system include increasing public research and development 
(R&D) funding, developing standardized benchmarks and data sets, investing in adaptive data 
collection systems and adopting participatory approaches for AI model development. 
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Chapter 5 – MANUFACTURING 
The manufacturing sector accounts for roughly one-third of global GHG emissions. AI has significant 
potential to help decarbonize manufacturing by optimizing existing industrial processes and 
operations in cost-effective ways.  

For example, AI can play an important role in steelmaking with electric arc furnaces—an important 
decarbonization technology in which steel is made with recycled scrap metal instead of coal. AI can 
help address the variability in each batch of scrap metal, recommending optimal production settings 
to adapt to the variability. Using AI tools, one Brazilian steel manufacturer achieved an 8% reduction 
in alloy additive consumption using AI, cutting both costs and emissions.  

More broadly, AI can help decarbonize manufacturing by enabling manufacturers to adapt to 
production issues faster and better, avoid past mistakes by leveraging historical data, improve 
production yields, promote recycling and circularity by adapting to variable recycled feedstocks, 
minimize energy consumption, adopt alternative energy sources and optimize manufacturing 
schedules and supply chains to reduce logistical overhead. 

Chapter 6 – ROAD TRANSPORT 
Road transport is a critical part of the global economy. Current modes of road transport rely heavily 
on fossil fuels, producing roughly 12% of global GHG emissions. 

AI has significant potential to help reduce GHG emissions from road transport. AI can speed 
deployment of electric vehicles (EVs) by improving siting of charging infrastructure, extending EV 
battery life and helping operate vehicle-to-grid networks. AI has significant potential to accelerate 
innovation in batteries, electric motors and alternative fuels. AI provides critical support for 
intelligent transportation systems, helps promote modal shifts and plays a central role in operating 
autonomous vehicles (which can reduce GHG emissions through platooning and other measures). 

Several barriers could hinder progress. Lack of data, the absence of uniform data standards and a 
shortage of trained personnel are among the most significant. Using AI in road transport also creates 
risks, including bias, invasion of privacy and—in the case of autonomous vehicles—increasing GHG 
emissions as the use of individual vehicles becomes easier. To realize the full potential of AI to 
reduce emissions from road transport, governments should invest in smart transportation 
infrastructure; industry and standards organizations should work together on data standards for 
smart transportation technologies; and governments, industry and academia should work together 
on AI tools to accelerate innovation in batteries and other technologies that reduce GHG emissions 
from road transport.  

Chapter 7 – AVIATION 
Emissions from aviation are rapidly growing as both passenger and cargo demand continues to climb. 
AI has the potential to reduce aviation emissions and climate impacts in several ways. One especially 
promising approach is using AI to help predict when aircraft-induced condensation trails (contrails) 
will form and enable minor flight route changes to avoid them. (Emerging science has demonstrated 
that climate impacts from contrails are quite large—comparable to radiative forcing from direct CO2 
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emissions from aviation.) AI can also predict key properties of novel formulations of sustainable 
aviation fuel (SAF), helping accelerate adoption of non-fossil-based fuels. 

AI-based tools can improve engine and aircraft design to increase fuel efficiency. Using AI to simulate 
fuel combustion within aircraft engines can help optimize engine design and allow for testing of 
entirely novel design concepts. Similar approaches can improve engine cooling designs, increasing 
engine longevity. AI methods can also help design and test aircraft bodies, wings and nacelles to 
minimize aerodynamic drag and reduce weight, further boosting overall fuel efficiency. During 
aircraft operations, near-real-time decisions must be made about runway allocation, take-off/landing 
timing, and climb/descend trajectories. AI tools can help optimize all of these, boosting overall 
efficiency and reducing unnecessary fuel burn. 

Regulatory frameworks for aviation are appropriately focused on safety and may inadvertently 
present a barrier to adopting some AI-based methods. Industry, innovators and governments must 
work together closely to realize the benefits of AI for climate mitigation in aviation. Work on contrails 
should be a top priority. Towards that end, national governments should increase the coverage and 
quality of publicly available meteorological data, require all commercial and private aircraft to report 
non-CO2 climate impacts (including contrail formation) and release these data publicly. 

Chapter 8 – BUILDINGS 
Buildings are responsible for roughly 18% of global GHG emissions. This includes emissions 
throughout the building life-cycle—from design to steel and cement manufacturing to construction 
to operation to demolition.  

AI can play an important role in reducing CO2 emissions from buildings. In the design stage, AI can 
help improve energy efficiency, site placement and material choices. During construction, AI can 
assist in waste management, facilitate prefabrication and help identify emission-reduction 
opportunities on site. When a building is operational, AI can optimize HVAC (heating, ventilation and 
air conditioning) and other mechanical systems, reducing energy consumption based on real-time 
data on building occupancy and usage patterns. AI has the potential to help buildings generate clean 
energy on-site, optimizing solar panel placement and integrating building-generated energy with 
broader grid demands. AI can enable efficient categorization of construction waste, facilitating reuse 
of materials. 

Approaches must be adapted to diverse local contexts, especially to conditions in developing 
economies, where the vast majority of building construction will take place in the decades ahead. 
Key stakeholders’ lack of familiarity with AI technologies is a significant barrier. Governments, the 
private sector and professional associations should develop a platform to disseminate best practices 
regarding implementing AI in reducing building energy use and emissions. Multilateral development 
banks, national/bilateral organizations and other donor agencies should develop a program of 
technical assistance and funding to increase stakeholders’ capacity to develop AI innovation 
programs for the buildings sector. 
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Chapter 9 – CARBON CAPTURE 
Ambitious climate goals require widespread deployment and safe operation of carbon management, 
including carbon capture, use and storage (CCUS). Today, CCUS faces challenges in deployment, 
including project economics, permitting and public acceptance. AI has the potential to significantly 
reduce costs and accelerate deployment of CCUS, including radical improvements in performance 
and dramatically faster project implementation. 

AI could improve every aspect of CCUS research, development and deployment. From an early 
innovation perspective, AI can help identify new materials for carbon capture and use, including 
sorbents, catalysts and membranes. AI applications, such as digital twinning, could dramatically 
improve efficiency and costs of facility design and operations. Pipeline routing and subsurface 
characterization could benefit from AI tools reducing risks, costs and local impacts. Non-technical 
concerns could also benefit from AI applications. For example, AI could speed drafting and review of 
air permits and approval of injection wells and could facilitate environmental monitoring or maintain 
environmental justice standards. 

To manifest these benefits, decision-makers must ensure adequate access to key data volumes to 
train these advanced tools and applications. Similarly, a workforce—from researcher to regulator—
must be trained in AI to ensure good outcomes and avoid challenges of AI bias or hallucination. 

Chapter 10 – NUCLEAR POWER 
Nuclear reactors could make a larger contribution to reducing carbon emissions if the costs could be 
lowered. AI is already being used to optimize fueling and maintenance of current-generation 
reactors, and shows promise in aiding in the design of the advanced reactors that are moving toward 
commercialization. AI may also improve efficiency of nuclear safety regulation. 

Boiling water reactors (BWRs) are already using AI in core design and monitoring, reducing 
enrichment requirements and cutting the volume of spent fuel, as well as avoiding unnecessary 
shutdowns. AI shows promise in helping plants move away from maintenance based on operating 
hours or calendar days and towards intervals based on interpretation of plant data to pinpoint the 
likelihood of future equipment failure. AI can also interpret scans of irradiated concrete to reduce 
uncertainty about its condition, and it can be helpful in equipment design for advanced fission 
reactors and even for fusion reactors. 

But the application of AI to nuclear power faces challenges. The industry does not have large 
volumes of readily accessible data about operations and component performance, for example. 
Further, bringing AI into a complex, tightly linked safety-critical system will require careful planning 
and vetting of software tools. 
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PART III – CROSS-CUTTING TOPICS 
Chapter 11 – LARGE LANGUAGE MODELS (LLMs) 
Large language models (LLMs) have captured the public’s imagination through the human-like output 
of popular products like ChatGPT. These LLMs are already helping mitigate climate change. LLMs are 
helping make sense of vast repositories of climate change information from many sources in multiple 
languages, identifying sentiment and argument structure in climate change discussions, and 
summarizing climate change risks and impacts described in the growing body of climate research. 

In the future, LLMs can do even more to fight climate change. They can serve as tutors in climate 
education, depict personalized climate consequences and suggest individualized climate actions. 
They can advance basic science in climate change mitigation, from materials discovery for better 
batteries and carbon capture to sophisticated management of the power grid. They can help 
shortcut the current maze of permitting requirements that are slowing deployment of carbon-free 
power. 

Barriers to using LLMs to mitigate climate change include issues with trusting “black boxes,” which 
can “hallucinate” incorrect information. Risks include bias, security threats, harmful use and LLMs’ 
own emissions of GHGs. National governments, LLM developers and other stakeholders should 
create and share LLMs trained on climate data while establishing benchmarks and training programs 
to ensure their effective use in addressing climate change. They should increase R&D efforts, 
promote transparency in tracking LLMs’ carbon footprint and work to advance LLM applications in 
fighting climate change. 

Chapter 12 – GREENHOUSE GAS (GHG) EMISSIONS MONITORING 
Accurate information about GHG emissions is vital for addressing climate change. Historically, GHG 
data have been fragmented and sometimes incomplete, with significant time lags, limiting the ability 
to design effective mitigation strategies. AI is now playing a critical role in overcoming this limitation 
by analyzing vast amounts of data from satellites and other technologies to provide more complete, 
near-real-time emissions monitoring. 

AI’s contributions are particularly notable in monitoring methane emissions. Methane is increasingly 
monitored by AI-driven tools that use satellite imagery to detect, quantify and attribute  emission 
events. This approach has allowed policymakers and companies to identify "super-emitters" and 
pinpoint chronic methane leaks from industries like fossil fuel extraction and waste management, 
which were previously mostly unreported. AI is also revolutionizing CO2 emissions tracking by 
integrating large data sets from different sectors, such as transportation and industry, to provide 
real-time data. AI is also facilitating transparency in carbon-offset markets by enabling detailed 
monitoring of natural carbon sinks, such as forests, through satellite imagery. 

To help realize AI's potential to revolutionize emissions monitoring, national governments should 
encourage the United Nations Framework Convention on Climate Change (UNFCCC) to update 
guidance on preparing national emissions inventories so that it explicitly allows the use of AI-enabled 
data rather than just emissions factor–based assessments. National governments and appropriate 
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international bodies should continue ongoing efforts toward standardizing AI-enabled emissions data 
and should consider setting up formal processes to certify AI-assisted emissions data and data 
providers. 

Chapter 13 – MATERIALS INNOVATION 
Advanced materials with special properties are vital for decarbonization because they underpin many 
low-emitting technologies. Examples include catalysts, battery anodes, solar photovoltaics, wind 
turbine blades, HVAC refrigerants, superconductors, carbon-capture sorbents and high-strength 
magnets. 

Historically, advanced materials were discovered through accident or tedious, expensive trial and 
error. Several decades ago, advances in materials science theory and computing power enabled a 
transition to a more computational basis for materials discovery. However, the standard methods for 
identifying new advanced materials through computation require large computing resources and are 
still too slow to fully meet the needs of materials innovation for decarbonization. 

Recently, computational materials science has begun using AI methods. These methods are already 
having an important impact. In some cases, AI models can fully replace conventional science-based 
approaches, greatly speeding up processing times. In other cases, AI can help quickly interpret results 
of materials-characterization experiments, enabling rapid, high-throughput testing of advanced 
materials candidates. One especially promising development is using natural-language AI to 
synthesize the vast materials-science technical literature and to quickly produce accurate literature 
reviews and precise processing steps for materials production. Most recently, generative AI methods 
have been able to propose entirely new classes of advanced materials that had not previously been 
envisioned as relevant to decarbonization. While these advances are highly promising, much better 
integration between materials science and AI research is needed to fully realize the potential of this 
technology for climate mitigation. 

Chapter 14 – EXTREME WEATHER PREDICTION 
AI can help build resilience to extreme weather events fueled by climate change, such as severe 
droughts, intense storms and powerful wildfires. It can also strengthen resilience to flooding caused 
by accelerating sea-level rise. These events have caused thousands of deaths and major economic 
damage, with global losses estimated at $2.86 trillion from 2000 to 2019. 

Adaptation strategies range from long-term infrastructure improvements to short-term emergency 
response. AI-based forecasting models are becoming increasingly accurate, using far less time and 
energy and costing less than conventional forecast models. Thanks to these emerging capabilities, 
the role of AI in enhancing forecasting and enabling better early warning systems for extreme 
weather events is becoming increasingly important. AI is providing vital tools for disaster 
preparedness and response, especially in regions with limited forecasting capabilities today. 

Despite these advances, significant barriers to the widespread adoption of AI-enhanced forecasting 
remain. Insufficient data, technical expertise and financial resources limit progress. Transparent and 
interpretable AI models are critical to building trust and confidence among meteorologists and 
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emergency responders. Governments and international organizations must invest in AI-driven 
weather models, support infrastructure development and ensure equitable access to early warning 
systems globally. Collaboration between the public and private sectors is essential to harness the full 
potential of AI in mitigating the growing risks of climate change and safeguarding vulnerable 
populations. 

Chapter 15 – GREENHOUSE GAS (GHG) EMISSIONS FROM AI 
AI systems need energy for manufacturing silicon chips, training and running AI models, and more. 
This energy use does not necessarily result in significant GHG emissions. When the electricity at a 
data center comes from new solar, wind or nuclear power, for example, the GHG emissions from 
data-center operations are modest. GHG emissions from AI computation are currently less than 1%—
and perhaps much less than 1%—of the global total. Better data collection and assessment 
methodologies are needed to provide a more precise estimate with high confidence.  

Data center power demand is growing steeply in many places around the world, due in part to 
demand for AI. Estimates of near-term growth vary widely. Sharply growing demand for AI 
computation will very likely lead to increased GHG emissions in the near-term. Efficiency 
improvements in AI hardware and software, as well as the use of low-carbon energy in the AI supply 
chain, will constrain but not prevent this emissions growth.  

In the medium- to long-term, AI could result in either net increases or net decreases in GHG 
emissions. In part because AI is a transformational technology in the early stages of deployment, the 
range of uncertainty is enormous. Future GHG emissions from AI depend on a number of factors, 
including (1) growth in demand for AI, (2) improvements in the energy efficiency of AI hardware, (3) 
improvements in the energy efficiency of AI software, (4) use of low-carbon electricity in 
computation for AI, (5) use of AI to reduce production costs in the fossil fuel sector and (6) use of AI 
to reduce GHG emissions throughout the economy—such as the many AI applications discussed in 
this Roadmap. Each of these factors is highly uncertain, and they interact in complex ways. 

Chapter 16 – GOVERNMENT POLICY 
Governments play an important role in using AI for climate change mitigation—collecting data used 
in AI models, funding clean energy research programs that use AI tools, establishing policies that 
shape the use of AI in the power and transport sectors, and more. Governments also play an 
increasing role in managing risks from AI, which is essential in promoting trust in well-functioning AI 
systems. 

Government AI policies vary widely. Europe’s approach has been called "rights-driven," the US 
approach "market-driven” and China's approach "state-driven.” Government attention to AI has 
grown rapidly in the past several years, with discussions on topics including liability rules, labeling 
requirements, data privacy protections, workforce training programs and safety standards. Although 
government policies with respect to AI are evolving rapidly, these policies tend to change much more 
slowly than AI technologies themselves.  
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Governments can help realize AI’s potential to contribute to climate change mitigation with policies 
and programs in a range of areas. Governments should invest in data collection, curation and 
standardization; fund development of large-scale open-source foundational models tailored to 
address climate challenges; incentivize AI applications that contribute to climate mitigation with 
regulatory frameworks, financial incentives and public recognition programs; invest in education and 
training programs to develop a skilled AI workforce; facilitate knowledge sharing and collaboration 
between experts in climate mitigation and experts in AI; and establish ethical guidelines for 
developing and deploying AI applications to help foster trust in well-functioning AI applications for 
climate change mitigation.   

Chapter 17 – FINDINGS AND RECOMMENDATIONS 

A. Findings
1. AI is contributing to climate change mitigation in important ways.

2. AI has the potential to make very significant contributions to climate change mitigation in the
years ahead.

3. The principal barriers to using AI for climate change mitigation are (i) the lack of available,
accessible and standardized data and (ii) the lack of trained personnel.

4. Other barriers to using AI for climate mitigation include cost, lack of available computing power
and institutional issues.

5. GHG emissions from AI computation are currently less than 1%—and perhaps much less than
1%—of the global total.

6. GHG emissions from AI computation will very likely rise in the near-term.

7. In the medium- to long-term, AI could result in either net increases or net decreases in GHG
emissions. In part because AI is a transformational technology in the early stages of deployment,
the range of uncertainty is enormous.

8. Only a tiny fraction of GHG emissions associated with AI operations are related to AI applications
for climate change mitigation.

9. Trust in AI is essential for AI to deliver substantial benefits in mitigating climate change. To earn
this trust, AI applications must undergo risk assessments that address a range of concerns. Risks
related to safety, security, model accuracy, misinformation and disinformation require the
closest attention.

10. Open-source foundation models have the potential to contribute to climate change mitigation by
providing more organizations opportunities to access AI tools.

11. Significant resources and sustained focus—by governments, corporations, philanthropies and
other stakeholders—will be required for AI to reach its potential in helping mitigate climate
change.
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12. Several recommendations in last year’s ICEF Artificial Intelligence for Climate Change Mitigation
Roadmap have been adopted by key stakeholders.

B. Recommendations
1. Every organization working on climate change mitigation should consider opportunities for AI to

contribute to its work. 

2. Governments, businesses and philanthropies should fund fora in which AI experts and climate
change experts jointly explore ways AI could contribute to climate change mitigation.

3. Governments should assist in developing and sharing data for AI applications that mitigate
climate change.

a. Governments should systematically consider opportunities to generate and share data that
may be useful for climate mitigation.

b. Governments should establish policies to promote standardization and harmonization of
climate and energy-transition data.

c. Governments should establish climate data task forces composed of key stakeholders and
experts. 

4. Companies with datasets relevant to climate change mitigation should consider sharing portions
of these datasets publicly. 

5. Every organization working on climate mitigation should prioritize AI skills-development and
capacity-building. 

a. Governments and foundations should launch AI-climate fellowship programs.

b. Government agencies with responsibility for climate issues should regularly review the
capabilities of their staff with respect to AI. 

c. Every organization working on climate change mitigation should require minimum AI literacy
from a broad cross-section of employees. 

6. Educational institutions should offer courses that provide familiarity with AI and its uses in climate
mitigation. 

7. Governments should adopt policies to minimize GHG emissions from AI’s computing
infrastructure, including requiring AI developers and data center operators to disclose GHG
emissions associated with their operations on a full life-cycle basis.

8. Organizations that use AI for climate change mitigation should assess and address potential risks
of AI tools. 
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9. All government agencies with responsibility for climate change, including environment and energy
ministries, should create an Artificial Intelligence Office, responsible for assessing opportunities,
barriers and risks with respect to AI in all aspects of the agency’s mission.

10. Governments should provide substantial funding for developing and applying AI applications for
climate mitigation.

a. Governments should fund AI for climate change mitigation programs with a focus on
emissions reduction potential, not just new AI methods

b. Governments should help increase the availability of computing power for AI projects related
to climate change mitigation.

11. Governments, philanthropies and information technology companies should play a pivotal role in
funding development of large-scale open-source foundation models tailored to address climate
challenges.

12. Governments should launch international platforms to support cooperative work on AI for climate
change mitigation.

a. Member countries in the Clean Energy Ministerial (CEM) and Mission Innovation (MI), as well
as other stakeholders, should participate actively in the CEM/MI AI initiative.

b. The United Nations Framework Convention on Climate Change (UNFCCC), International
Energy Agency (IEA) and Food and Agriculture Organization of the United Nations (FAO),
among other organizations, should build AI-for-climate issues centrally into their work
programs. 

c. One or more global organizations should be tasked with helping reconcile any conflicting AI-
enabled data on GHG emissions. 
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Artificial intelligence (AI) is part of our everyday lives. Email providers use AI to filter spam. Postal 

services apply AI to route hand-written envelopes. Technology companies leverage AI to identify 

faces in photographs, while radiologists reach for AI to interpret medical scans. Economists use AI to 

forecast elections, and digital retailers turn to AI to optimize prices.1,2  

The release of ChatGPT in November 2022 generated extraordinary public attention to AI. ChatGPT 

quickly became the most rapidly adopted product in human history, with more than 100 million 

users by January 2023. Its operator claims that 200 million people are now using ChatGPT on a 

weekly basis.3 This increased attention has led to questions about how AI could help address major 

global challenges, including climate change—the topic of this report. 

A. What Is AI?

AI is the science of making computers 

perform complex tasks typically 

associated with human intelligence. 

Modern AI relies on a branch of 

computer science called machine 

learning (ML). ML refers to a set of 

algorithms that detects patterns from 

large and sometimes messy data 

without explicit programming (i.e., 

without a human-crafted description of 

each pattern). This is a task often 

associated with human learning—for 

example, learning to walk, speak or 

identify objects.  

How does AI differ from traditional computation? Consider a computer program that plays chess. 

The traditional approach to building such an algorithm involves explicitly programming the rules of 

chess, encoding basic principles of good game play, and specifying a method to search over all 

possible moves to pick the best one. Even in a game as seemingly simple as chess, this is an 

enormous task for a computer—the number of chess positions is about the same as the number of 

atoms on Earth.4 (For the curious, that is about 1,000,000,000,000,000,000,000,000,000,000, 

000,000,000,000,000,000 positions.) No existing computer, even the most powerful supercomputing 

clusters, can efficiently play chess this way. 

Now consider an AI approach to playing chess. The core idea is to replace human input on what 

constitutes good strategy with a system that only uses the rules of the game to play against itself to 

find good strategies. Leveraging clever mathematics that significantly reduce the need to search over 

all possible moves, an AI system can efficiently simulate games against itself millions of times. This 

repeated simulation enables the AI system to “learn” the principles of good play, in a way that 

exceeds the ability of human programmers to explicitly encode them in software. This approach to AI 

uses branches of ML known as deep neural networks (see Figure 1-1) and reinforcement learning, 

Figure 1-1.  A visualization of a deep neural network, a type of AI 

model that powers popular AI systems such as ChatGPT. 
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which are ideally suited to problems where simulation plays a prominent role.5 Table 1-1 summarizes 

the key difference between AI and traditional computation. 

Supervised and unsupervised ML are two other ways to build AI systems—both rely on historical data 

to “learn” patterns.  

▪ Supervised learning requires historical data with labels or explicit targets. One common

example includes handwritten digit recognition—used by many postal services around the

world—which pairs many thousands of scanned pictures of written digits with their

corresponding number to “train” the AI system.

▪ Unsupervised learning only requires historical data, without any corresponding labels. The AI

system is trained to search for patterns and associations hidden in the data. This form of AI is

commonly used in recommendation engines, which can suggest movies you might like based

on movies you have previously watched and historical patterns of the likes and dislikes of other

people watching similar movies.

Table 1-1. AI differs from traditional software in its requirements and its outputs. 

B. What Can AI Do?

Modern AI systems have far-reaching capabilities in at least four areas. 

Detection. AI can detect patterns and anomalies in vast and complex data sets. This capability 

enables AI to perform tasks such as detecting faces in images and pinpointing greenhouse gas (GHG) 

leaks from satellite data. Monitoring combines continuous detection with alerting capabilities. In this 

context, AI facilitates continuous detection of unusual patterns or anomalies within data sets, which 

is different from traditional monitoring methods that involve periodic checks and human 

intervention. Classic examples of monitoring include tracking financial transactions for signs of fraud 

and surveying gas extraction asset data to detect methane leaks, both of which benefit from AI-

powered detection and monitoring. 

Prediction. AI systems can learn from historical patterns to make predictions and forecasts about 

how a system might behave in the future. This capability enables AI to perform tasks such as guessing 

TRADITIONAL SOFTWARE ARTIFICIAL INTELLIGENCE (AI) 

Requirements • No historical data needed

• Explicit programming of domain
knowledge

• No “training” needed (everything is
explicitly programmed)

• Historical data or simulator

• Implicit programming of
expectations of patterns from data

• Need to “train” the AI algorithm to
extract patterns

Outputs • Deterministic results • Statistical results: can sometimes
make mistakes

• Can efficiently solve simpler
problems

• Can offer solutions to more complex
problems
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what movies you might like to watch and forecasting complex weather patterns for the upcoming 

week. Forecasting typically implies a prediction over time (almost always in the future). But the 

ability to make predictions is a fundamental part of AI systems, one that enables the capabilities 

below. 

Optimization. AI systems can leverage their predictions to optimize systems and recommend actions 

that achieve specific goals. For instance, AI can identify the minimum amount of fertilizer needed for 

a particular crop by predicting its effect on production yield. Similarly, AI can optimize steel 

production by predicting how different recipes will impact its final strength properties. The output of 

AI-based optimization are action recommendations, which are typically implemented by human 

experts. (See the example below on AI’s potential.) 

Simulation. AI systems can create complex simulations and scenario plans, allowing organizations to 

test hypotheses in situations where running real-world experiments are not practical. AI-powered 

simulations can sift through millions of new material candidates, helping identify promising 

candidates for empirical validation. Scenario planning identifies future “what-if” situations, assesses 

risks and provides actionable insights for strategic decision-making. This can enable energy providers 

to plan for supply and demand scenarios that their grids may have never experienced before, 

minimizing operational costs and risks. 

Many AI systems offer capabilities that fall into more than one category above.  

C. How Does AI Work? 

With AI, there is no longer a need to explicitly program every detail of how to solve a problem. 

Instead, we rely on data, a model and computation. 

Data. To replace explicit programming, supervised and unsupervised AI methods require historical 

data—observations and measurements that pertain to the problem at hand. In postal routing, these 

are images of handwritten letters and digits mapped to their correct digital representations. In facial 

recognition, these are many photographs of the same individual, labeled with their name. Access to 

high-quality data is essential for AI training. More data directly improves the odds of finding useful 

patterns—up to a point, after which more data provide diminishing benefits. (In reinforcement 

learning, data sets are typically simulated.) 

Model. AI methods require implicit programming of the types of patterns that lie hidden in data. This 

part of an AI program is called the “model”—a mathematical description of pattern types expected in 

data. For example, if a sequence of chess moves appears frequently in winning games, the model 

should pick this up as a successful strategy. If some people write the letter “t” with a straight line and 

others with a curve at the bottom, the model should identify both as valid forms of a “t.” The 

scientific community has been steadily developing increasingly sophisticated models over the past 

several decades. 

Computation. Models by themselves are useless—they provide nonsense answers—until they are 

“trained” on data. Collectively, the various statistical approaches to achieving this goal and the 

hardware that enables such algorithms fall under the term “computation”—a set of mathematical 
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methods to use a model to find and evaluate the quality of patterns (“training”), while simulating 

multiple scenarios. In chess, this involves making thousands of clever hypothetical moves to evaluate 

a particular strategy. In postal routing, this involves quantifying the uncertainty in differentiating a 

“3” from an “8” to recognize such digits reliably. Computation integrates the idea that AI programs 

do not contain explicitly programmed rules; rather, computation is the mechanism by which AI 

unravels and leverages implicit patterns from data (Figure 1-2). 

AI has been steadily improving since its 

inception in the early days of computing. 

A combination of better access to rich 

data sources, better models for complex 

applications and better computing 

technology (software and hardware) for 

simulation has led to AI’s proliferation. 

D. What Is AI’s Potential? 

While chess contrasts AI to traditional 

software, it does not fully capture AI’s 

potential; a chess program is effectively 

playing a game. To dive deeper into a 

practical discipline that is evolving with 

AI,6 we turn to radiology—a branch of medicine in which specialist doctors use medical imaging 

(data) to diagnose and treat diseases. 

Radiologists are experts at pattern recognition. After years of training, these doctors spend much of 

their time detecting anatomical and physiological deviations from blurry and noisy medical scans—

which are themselves proxies for tissue and biology, not the real thing itself. AI can provide an 

important boost to performing this task.  

In cancer medicine, for instance, medical imaging data sets with expert-verified labeling of the 

location and type of tumors are increasingly available. Armed with these data sets, AI systems can be 

trained to detect patterns in the medical images that expert humans have labeled as a tumor. Once 

trained, these systems can be directed to examine new medical images, searching for similar 

patterns in the data that would imply the existence of a tumor. 

Once a tumor has been identified, an AI system can begin to simulate various treatment scenarios. 

How big would the tumor be after one session of radiotherapy? How about after the second? What if 

the parameters of the radiotherapy are slightly different? Do we end up with a better outcome? 

These are the types of questions radiologists can explore using AI to assist them in designing a 

treatment plan, which they execute using tested traditional software that operates medical 

equipment. The AI outputs a series of outcome probabilities, which themselves recommend 

treatment actions. 

 

Figure 1-2. AI systems work by using a model to identify patterns in 

data. Models by themselves are not useful and must be “trained” on 

data through computation. Computation integrates the idea that AI 

systems do not contain explicit information, rather computation is the 

mechanism by which AI unravels and leverages implicit patterns from 

data. 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 1: Introduction to AI - 1-6 

  

 

AI technologies not only help radiologists in their practice but also help push the scientific 

boundaries of their field. AI is enabling radiologists to process and search for patterns across huge 

databases, paving the way toward 

personalized treatments. This movement is so 

significant, it has its own name: radiomics.7 

The rise of AI in radiology has neither usurped 

traditional software nor displaced its 

practitioners. But it highlights a particular 

type of AI success story. When AI is combined 

with traditional software and human domain 

experts, the results are stronger than what AI 

can produce alone. Keeping “humans in the 

loop” is key to using AI to solve many real-

world problems (Figure 1-3). 

 

 
 

 
 

 

Figure 1-3. Keeping "humans in the loop" is essential to using 
AI to solve real-world problems. 

Box 1-1  

LARGE LANGUAGE MODELS (LLMS) AND 
THE FUTURE OF AI 
Large language models (LLMs), such as ChatGPT, are one type of AI system. LLMs analyze vast 

amounts of text data and can string together responses to queries by predicting the most likely 

next word in a sentence. The user interface is similar to conversing with a human,  

expanding the potential user base for such technology to anyone who can type  

a question into a mobile phone or computer. 

The success of these systems has revived questions around the future  

capabilities of AI. ML and AI experts are divided on the transformational  

potential of LLMs and the best balance between rapid innovation and  

caution. Chapter 11 of this Roadmap discusses LLMs in greater detail. 
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E. How Much Energy Does AI Need? 

In the past year the energy needs of generative AI models, such as ChatGPT, have received 

considerable media attention.8-10 But not all AI systems require as much computing power as 

generative AI. Some types of AI, such as simple statistical models, neural networks and 

reinforcement learning, require much less energy. The amount of energy an AI system needs is 

dictated by its model type and how frequently it is trained and used. 

Most AI models require relatively modest energy inputs, even with large data sets. However recently 

popular generative AI models, such as LLMs and image/video diffusion models, are far more energy-

intensive than other AI systems. This is because they require substantial energy both to train and to 

use. 

Training AI Models. In general, training is the most energy-intensive part of building an AI system. Yet 

for most AI systems, energy demands are not enormous. Some AI systems that analyze medical data, 

forecast manufacturing sensor outputs and process agricultural drone imagery can be trained on a 

laptop, often in a matter of minutes. In generative AI systems, however, the type of model (e.g., 

LLMs) and scale of data (e.g., billions of web 

pages) can require enormous amounts of 

computation. Training can become a weeks-

long energy-intensive task, executed on 

supercomputers housed in data centers.  

Using AI Models. Once an AI system has 

been trained, it becomes ready for use—

detecting patterns, predicting the future, 

optimizing systems and simulating “what-if” 

scenarios. In most AI systems, this is 

reasonably cheap to do. However, 

generative AI systems have introduced a 

new dynamic: they are energy-intensive 

both to train and to use. Enormous (and 

fiercely secretive) training costs have 

effectively priced out all but the largest 

technology firms from developing popular 

systems, like LLMs. But using such models is 

also very expensive, with ChatGPT rumored 

to cost OpenAI $700,000 per day.11  

 

 

Figure 1-4. AI systems differ in how much energy they require 

to train and to use. 
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F. What Kind Of Data Does AI Need? 

Unlike traditional software, AI requires access to historical data. These data can come in many 

different forms and be hosted by different types of entities. The availability and accessibility of these 

data are both important considerations for their potential role in AI systems.  

i. Data types 

AI systems can work with many different data types. 

▪ Tabular data. Measurements that follow a generic row and column structure. Often associated 

with spreadsheet applications, tabular data can represent multiple measurements (rows) of a 

set of things (columns). Common across many applications. 

▪ Time-series data. Measurements that have a time ordering and can be plotted over time. 

While small time-series data sets can also be considered tabular, they are often stored in 

database software that can handle large volumes of data. Common in signal processing (audio, 

remote sensing), finance and econometrics. 

▪ Geospatial and raster data. Measurements that have a spatial ordering and can often be 

viewed as images. This kind of data no longer looks tabular; they are often stored as files or in 

special databases. Common in satellite imaging and climate science. 

▪ Network data. Measurements that come with a graph of nodes and edges. This kind of data is 

often stored in special graph databases. Common in power systems and social networks. 

▪ Text and sequential data. Measurements that comprise sequences of symbols, such as words. 

This kind of data is typically stored as text files but can also be encoded in databases. Common 

in language applications. 

Box 1-2  

HOW MUCH DATA DOES AI NEED? 
The answer to this important question depends on the “resolution” of the problem AI is solving. 

In chess, the number of moves in each game in a data set has no effect—the  

“resolution” of the task is at the game-level. The more games, 

the better.  

In time-series tasks, if a common event is being studied, a few 

days of data may be sufficient. But for rare events, years if not 

decades of historical measurements will be needed. In general, 

data size is not a useful metric—the amount of data to drive 

successful AI applications can range from megabytes12 to 

terabytes.13 
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ii. Data hosts and owners 

Data that can be used for AI applications may be hosted by different organizations and entities. 

Public sector data hosts include government agencies, state-owned enterprises, public universities, 

national research laboratories and multilateral institutions. Private sector data hosts include for-

profit companies, not-for-profit organizations (e.g., private universities, think tanks, private research 

laboratories) and individuals. For both public sector and private sector organizations, data can have 

varying degrees of availability and accessibility. 

iii. Data availability 

The term “data” loosely refers to some amount of measured information. But for AI applications, the 

way in which data are measured and digitized matters (Figure 1-5). 

▪ Measured and well-digitized. Properly designed and deployed instrumentation will provide 

high-quality data that can power AI applications. Such data typically exhibit a high degree of 

spatial and temporal resolution, covering relevant areas in sufficient precision over an 

appropriate number of experiments and amount of time. Examples include industrial 

production data, high-fidelity weather data and fine-resolution satellite data. 

▪ Measured but poorly digitized. Data where instrumentation is either insufficient or improperly 

configured may not be able to drive successful AI applications. These cases can occur in 

underfunded application areas (biodiversity studies), rapidly changing application areas 

(agriculture) and broader geographies (weather data in developing nations). For example, 

digitizing the monthly total energy usage at the building-level is not sufficient to drive AI-based 

individual household energy optimization. 

▪ Measured but not digitized. Measurements that could support AI applications may be 

measured but not digitized. Digital instruments without connectivity, analog instrumentation 

and manual observations constitute much of this category. Examples include digital 

thermometers without internet connectivity, analog pressure gauges and visual observations 

of local weather. 

▪ Not measured. Facts and quantities that would be required to drive an AI application may not 

be measured at all. In these situations, the ideal outcome is to leapfrog to measured and well-

digitized data. 

iv. Data accessibility 

Data that are measured and (ideally well) digitized may have varying levels of accessibility  

(Figure 1-5). 

▪ Open-source data. These are the most easily accessed data. Open-source data sets are often 

hosted on public websites or other public data services. While open-source data sets are 

widely accessible, they may be subject to licensing9 agreements that limit their use. Such data 

may also lack the specificity required in AI applications, as they may have been anonymized to 

protect individual privacy or trade secrets. Examples include government databases, academic 

data repositories and data sets shared for data-science competitions. 
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▪ Data at cost. These are data that are governed by some sort of usage agreement at a cost 

dictated by their host. Such data are often high-quality and specific to application areas and 

may also be governed by additional licensing agreements. Examples include imaging data sold 

by satellite-operating corporations, curated data for self-driving vehicle development and 

transportation data from shipping corporations. 

▪ Internal data. These data are kept by their hosts to be used internally. Such data are typically 

proprietary, containing confidential or private information. Examples include industrial 

production data, material-science research and development records, and GPS location data at 

the individual level. 

▪ Inaccessible data. These data are generated but not stored. Such data are often temporarily 

created by computer programs and used in some way. Derived results may be stored, but the 

raw data are frequently discarded. Examples include physical system simulators and 

intermediate data used in the processing of other data. Inaccessible data prevents AI 

development. 

G. Why Is AI Developing So Rapidly? 

The speed and scale of recent AI development and deployment are remarkable. Improvements in 

computational technology and exponential reductions in cost are fueling larger and more complex AI 

systems.10 The sharing of pre-trained models has also lowered costs by enabling transfer learning 

instead of building AI systems from scratch. These decreasing costs are enabling more widespread 

use of advanced AI like large language models for chatbots.  

 

Figure 1-5. Data availability and accessibility are key aspects of enabling AI applications. The ideal zone for AI 
development relies on accessible, measured and well digitized data. 
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H. Readings 

There is a vast literature on AI, including many books and articles introducing computation, ML and 

AI to non-experts. The following sources may be helpful: 

1. Stuart Russell. Human Compatible: Artificial Intelligence and the Problem of Control. (Penguin 

Publishing Group, London, UK, 2020) 

2. Nate Silver. The Signal and the Noise: Why So Many Predictions Fail-but Some Don't. (Penguin 

Publishing Group, London, UK, 2012) 

3. Judea Pearl & Dana Mackenzie. The Book of Why: The New Science of Cause and Effect. (Basic 

Books, New York, NY, 2018) 

4. Brian Christian & Tom Griffiths. Algorithms to Live By: The Computer Science of Human 

Decisions. (Henry Holt and Company, New York, NY, 2016) 

The following textbooks may be helpful to those seeking additional technical depth in AI and ML: 

1. Kevin P. Murphy. Probabilistic Machine Learning: An Introduction. (MIT Press, Cambridge, 

Massachusetts, 2022) 

2. Moritz Hardt & Benjamin Recht. Patterns, Predictions, and Actions: Foundations of Machine 

Learning. (Princeton University Press, Princeton, New Jersey, 2022) 

3. Stuart Jonathan Russell & Peter Norvig. Artificial Intelligence: A Modern Approach. (Pearson, 

London, UK, 2020) 

4. Richard S. Sutton & Andrew G. Barto. Reinforcement Learning, second edition: An 

Introduction. (MIT Press, Cambridge, Massachusetts, 2018) 

  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 1: Introduction to AI - 1-12 

  

 

I. References 

1 Postal Facts. Optical character recognition; US Postal Service (USPS), Washington, D.C., 
https://facts.usps.com/98-percent-of-hand-addressed-letters/ (Accessed August 2024). 

2 Bibb Allen et al. 2020 ACR Data Science Institute Artificial Intelligence Survey. Journal of the American 
College of Radiology 18, 1153-1159 (2021). https://doi.org/10.1016/j.jacr.2021.04.002. 

3 Ina Fried. OpenAI says ChatGPT usage has doubled since last year; Axios, Arlington, Virginia, 
https://www.axios.com/2024/08/29/openai-chatgpt-200-million-weekly-active-
users?utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosam&stream=t
op  (2024). 

4 Stefan Steinerberger. On the number of positions in chess without promotion. International Journal of 
Game Theory 44, 761-767 (2015). https://doi.org/10.1007/s00182-014-0453-7. 

5 David Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go 
through self-play. Science 362, 1140-1144 (2018). https://doi.org/10.1126/science.aar6404. 

6 Garry Choy et al. Current Applications and Future Impact of Machine Learning in Radiology. Radiology 
288, 318-328 (2018). https://doi.org/10.1148/radiol.2018171820. 

7 Kaustav Bera et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. 
Nature Reviews Clinical Oncology 19, 132-146 (2022). https://doi.org/10.1038/s41571-021-00560-7. 

8 Brian Calvert. AI already uses as much energy as a small country. It’s only the beginning; Vox, 
Washington, D.C., https://www.vox.com/climate/2024/3/28/24111721/climate-ai-tech-energy-
demand-rising (2024). 

9 Seth Fiegerman & Matt Day. Why AI Is So Expensive; Bloomberg, New York, New York, 
https://www.bloomberg.com/news/articles/2024-04-30/why-artificial-intelligence-is-so-expensive 
(2024). 

10 Ariel Cohen. AI Is Pushing The World Toward An Energy Crisis; Forbes, Jersey City, New Jersey, 
https://www.forbes.com/sites/arielcohen/2024/05/23/ai-is-pushing-the-world-towards-an-energy-
crisis/ (2024). 

11 Aaron Mok. ChatGPT could cost over $700,000 per day to operate. Microsoft is reportedly trying to 
make it cheaper.; Business Insider, New York, New York, https://www.businessinsider.com/how-much-
chatgpt-costs-openai-to-run-estimate-report-2023-4 (2023). 

12 Creative Commons. Creative Commons; Mountain View, CA, https://creativecommons.org/ (Accessed 
August 2024). 

13 OpenAI. AI and compute; San Francisco, California, https://openai.com/research/ai-and-compute 
(2018). 

 

https://facts.usps.com/98-percent-of-hand-addressed-letters/
https://doi.org/10.1016/j.jacr.2021.04.002
https://www.axios.com/2024/08/29/openai-chatgpt-200-million-weekly-active-users?utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosam&stream=top
https://www.axios.com/2024/08/29/openai-chatgpt-200-million-weekly-active-users?utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosam&stream=top
https://www.axios.com/2024/08/29/openai-chatgpt-200-million-weekly-active-users?utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosam&stream=top
https://doi.org/10.1007/s00182-014-0453-7
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1148/radiol.2018171820
https://doi.org/10.1038/s41571-021-00560-7
https://www.vox.com/climate/2024/3/28/24111721/climate-ai-tech-energy-demand-rising
https://www.vox.com/climate/2024/3/28/24111721/climate-ai-tech-energy-demand-rising
https://www.bloomberg.com/news/articles/2024-04-30/why-artificial-intelligence-is-so-expensive
https://www.forbes.com/sites/arielcohen/2024/05/23/ai-is-pushing-the-world-towards-an-energy-crisis/
https://www.forbes.com/sites/arielcohen/2024/05/23/ai-is-pushing-the-world-towards-an-energy-crisis/
https://www.businessinsider.com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4
https://www.businessinsider.com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4
https://creativecommons.org/
https://openai.com/research/ai-and-compute


ICEF AI for Climate Change Mitigation Roadmap (Second Edition) 

November 2024

Return to Table of Contents  

Chapter 2: Introduction to Climate Change - 2-1 

CHAPTER 2:  

INTRODUCTION TO CLIMATE CHANGE
Hoesung Lee, David Sandalow, Julio Friedmann and Trishna Nagrani 

A. Climate Change Background ........................................................................................................... 2-2

B. Contributions of Artificial Intelligence to Climate Science ............................................................ 2-4

C. Readings............................................................................................................................................ 2-6

D. References ........................................................................................................................................ 2-7



ICEF AI for Climate Change Mitigation Roadmap (Second Edition) 

November 2024 Chapter 2: Introduction to Climate Change - 2-2 

A. Climate Change Background

Concentrations of heat-trapping gases in the atmosphere are now higher than at any time in human 

history.1 This is changing the Earth’s climate.2 (See Figures 2-1 and 2-2.) 

The Earth’s average global temperature has risen by more than 1 °C (almost 2 °F) since the second 

half of the 19th century.a (See Figure 2-3.) Based on global average temperatures: 

▪ July 22, 2024 was the hottest day ever recorded4

▪ July 2023 was the warmest month ever recorded3

▪ 2023 was the warmest year on record, by a substantial margin (the average temperature was

1.45 ± 0.12 °C above pre-industrial levels)3

▪ The last decade is likely the warmest 10-year period on record3 

The principal heat-trapping gases are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and 

fluorinated gases (such as HFCs and SF6). These are commonly called greenhouse gases (GHGs). (See 

Figure 2.) CO2 is responsible for 

roughly 76% of the warming impact 

of GHGs globally. Methane is 

responsible for roughly 18%, nitrous 

oxide for 4% and fluorinated gasses 

for 2%.5 

Human activities are the principal 

cause of the buildup of GHGs in the 

atmosphere.1 Those activities 

include burning fossil fuels (coal, oil 

and gas), land use and land-use 

change, and patterns of 

consumption and production.1 

Roughly 34% of global GHG 

emissions come from electricity and 

heat production; 24% from industry; 

22% from agricultural, forestry and 

other land use; 15% from transport 

and 5% from buildings.5 

a To be precise, the Earth’s average global temperature from 2014-2023 was 1.2°C (1.9°F) above the 
1850-1900 average.3 

Figure 2-1. Greenhouse Effect. 
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Since 1850, cumulative net CO2 emissions have been 2400 ± 240 GtCO2,  42% of which occurred 

during the last 30 years (see IPCC, 2023 Summary for Policymakers at p. 51).  

The impacts of a changing climate are being felt across the globe: 

▪ Storms, heat waves and droughts have increased in frequency and intensity in recent decades. 

Scientists are increasingly able to attribute these increases directly to human activities—in 

particular the burning of fossil fuels.7,8 

▪ Warming air temperatures and droughts, made more likely by climate change, have directly 

contributed to increased fire risk in many parts of the world. For example, changes in the 

climate over the past 30 years are associated with a doubling of extreme fire weather 

conditions in California.9 

▪ Approximately 3.3–3.6 billion people are highly vulnerable to climate hazards, including acute 

food insecurity and reduced water security.1 

▪ Between June and August 2022, Pakistan experienced unprecedented floods, which affected 

33 million individuals. Over 1700 lives were lost and more than 2.2 million houses were 

destroyed or damaged.10 

Billions of people face extraordinary risks unless the buildup of heat-trapping gases in the 

atmosphere slows and then reverses in the decades ahead.11 Those risks include even more severe 

and frequent storms, floods, droughts and heat waves, as well as sea-level rise.12 One study found  

 

Figure 2-2. NASA, Global Climate Change, Vital Signs of the Planet, Carbon Dioxide.6  
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that, in roughly a dozen 

locations across the 

Mediterranean and Middle 

East, temperatures are likely 

to reach 50 °C every year in 

the latter part of this 

century. Such temperatures 

were extremely rare or 

impossible in these locations 

in the pre-industrial world.14 

Climate change is expected 

to increase heat-related 

mortality rates and the 

incidence of lung and heart 

disease associated with poor 

air quality. Higher temperatures and more frequent flooding events caused by climate change 

contribute to the spread of infectious and vector-borne communicable diseases, such as dengue, 

malaria, hantavirus and cholera.15 

In 2015, more than 190 nations adopted the Paris Agreement, which calls for “holding the increase in 

global average temperature to well below 2 °C (3.6 °F) above pre-industrial levels” and “pursuing 

efforts to limit the temperature increase to 1.5 °C (2.7 °F) above pre-industrial levels.”16 However, 

policies currently in place around the world would result in a global average temperature increase of 

2.2–3.5 °C (4–6.3 °F) (see IPCC, 2023 at p. 111) above preindustrial levels by 2100,1 and many policies 

to limit emissions are not being fully implemented.17 The world is not on a path to meet globally 

agreed upon climate change goals. 

In April 2022, the Intergovernmental Panel on Climate Change (IPCC) Working Group 1 (WGI) 

concluded that it is almost inevitable that the Earth’s average temperature will temporarily exceed 

the Paris Agreement’s 1.5 °C threshold in the short-term, although global average temperatures 

could return to below that level by the end of the century. The IPCC also found that a return to levels 

below the 1.5 °C threshold can only be achieved with rapid and deep reduction in GHG emissions and 

enhanced CO2 removal (see IPCC, 2023 at p. 231). 

B. Contributions of Artificial Intelligence to Climate Science 

Artificial intelligence (AI) is making important contributions to the scientific understanding of climate 

change. While AI applications are still in relatively early stages of development, the progress to date 

suggests real opportunity for better monitoring of anthropogenic climate impacts, better 

understanding of how the Earth’s climate is likely to evolve and better predictions of climate impacts. 

 

 

Figure 2-3. Global average temperatures 1880-2022.13  
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i. Improving climate model performance 

The best scientific understanding of climate dynamics and forecasts of climate impacts are based on 

computer simulations of complex climate models. To validate these simulations, results are 

compared across models (“model intercomparison”) and to historical weather data (“hindcasting”). 

AI can help improve this comparison process, identifying biases in specific models and extracting the 

most useful physical results from increasingly massive amounts of climate model output data.18 

AI can also complement conventional physics-based climate modeling in hybrid approaches, 

dramatically reducing the need for certain very intensive computations19 or improving the resolution 

of model outputs.20 In some cases, AI can analyze the voluminous output of high-resolution climate 

models and assess potential biases in their predictions. A Stanford study using AI to analyze maps of 

temperature anomalies, for example, suggested that climate models underestimate the average rate 

of warming and that temperature increases are likely to exceed 1.5 °C by 2030–2035.21 Already, AI 

has improved both the pre-processing22 and post-processing23 of climate models and numerical 

weather prediction. 

A potential drawback of incorporating AI into climate simulations is less reproducibility (meaning that 

calculations cannot necessarily be repeated and arrive at essentially identical results). The complexity 

and probabilistic nature of some AI and machine learning (ML) techniques make this more 

challenging.24 

ii. Improving the understanding of climate processes and feedbacks 

The ability of AI to ingest and interpret immense volumes of climate and weather data has helped 

illuminate natural processes and important hidden feedbacks within the climate system. For 

example, one study identified the role 

of US Midwestern precipitation in 

modulating North Atlantic salinity.25 

Another AI-driven analysis of river 

floods illustrated that data-driven, 

empirical modeling using AI could 

perform as well as science-based 

simulations in many situations.26 AI can 

also reduce uncertainties in certain key 

climate drivers. For example, a recent 

study improved the understanding of 

the interactions between aerosols and 

clouds, which has long been challenging 

for climate models to accurately 

represent.27 

 

 

Figure 2-4. Svalbard, Norway. (photo: David Sandalow) 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 2: Introduction to Climate Change - 2-6 

  

 

iii. Providing more advanced warning for extreme weather 

Already, AI is beginning to improve weather forecasts associated with extreme events, providing 

accurate, near-term advanced warning in critical contexts.28 This work has made major strides in the 

past two years and could ultimately transform climate adaptation responses. Some of the most 

crucial areas in which this AI-enabled “nowcasting” (within 6 hours) capability is being applied 

include extreme precipitation29 and extreme wind speeds,30 with additional work on predicting 

extreme heat over timescales of days to weeks.31 

iv. Attributing extreme events to human influence 

Climate attribution is a rapidly changing field, and understanding how climate change leads to 

extreme events is important for governments, companies and public stakeholders. AI has already 

provided insights into human attribution around specific phenomena and mechanisms. These include 

river flooding in Europe,32 tropical cyclone intensity,33 periods of frost occurrence34 and many more. 

New organizations and government programs like Europe’s XAIDA35 are dedicated to this important 

task. 

v. Revealing additional climate drivers 

The ability of AI to analyze visual and numerical data for patterns has greatly improved the 

understanding of certain man-made climate drivers. For example, AI-based analysis of satellite data 

from the US National Aeronautics and Space Administration (NASA) revealed much higher ship-track 

cloud formation than was previously known (10 times greater) and detected a long-term reduction 

over 20 years due to sulfur reductions in maritime fuels.36 

C. Readings 

There is a vast literature on climate change, including many books and articles introducing climate 

change to non-experts. The following sources may be helpful: 

Books 

1. Bill Gates. How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs 

We Need. (Knopf Doubleday Publishing Group, New York, NY, 2021) 

2. Christiana Figueres & Tom Rivett-Carnac. The Future We Choose: Surviving the Climate Crisis.  

(Alfred A. Knopf, New York, NY, 2020) 

3. Vaclav Smil. How the World Really Works: The Science Behind How We Got Here and Where 

We're Going. (Penguin Publishing Group, London, UK, 2022) 

4. John Doerr & Ryan Panchadsaram. Speed & Scale: An Action Plan for Solving Our Climate 

Crisis Now. (Penguin Publishing Group, London, UK, 2021) 

5. David Wallace-Wells. The Uninhabitable Earth: Life After Warming.  (Crown Publishing Group, 

New York, NY, 2020) 
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Reports 

1. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2023: Synthesis Report  

(2023)  

2. International Energy Agency (IEA), World Energy Outlook 2023 (2023)  

3. World Meteorological Organization (WMO), State of Climate Services Report (2023)  

4. United Nations Environment Programme (UNEP), Emissions Gap Report 2022 (2022) 
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In 2023, carbon dioxide (CO2) emissions from the global power sector were almost 15 Gt—roughly 

28% of greenhouse gas (GHG) emissions globally.1,2 

The power sector will play a central role in decarbonizing the global economy. Most strategies for 

deep decarbonization foresee growing reliance on the power sector as vehicles, industry, space 

heating and other sectors shift from fossil fuels to electricity. In the Net Zero by 2050 scenario 

released by the International Energy Agency (IEA), for example, the share of electricity in final energy 

use increases from 20% in 2020 to 50% in 2050.3 The amount of final energy use changes very little 

during this period, so the electric power sector more than doubles in size in the decades ahead in 

this scenario. Other scenarios are similar.4  

For global climate change goals to be achieved, the power sector must grow and decarbonize at the 

same time. The scale of the challenge is enormous. 

▪ Despite the extraordinary fall in the price of renewable power in the past 30 years, fossil fuels 

still dominate the global power sector. In 2023, fossil fuels (coal, oil and natural gas) generated 

61% of the electricity produced globally. (In 1990, the figure was 65%.)5 

▪ The impressive and record-breaking deployment of renewable power in the past decade has 

not been enough to meet the growth in the world’s power demand in the same period.6 

▪ Trillions of dollars are currently invested in legacy fossil fuel infrastructure globally. The 

average life of much of this infrastructure is several decades.7-9 

▪ IEA analysis suggests that achieving net-zero emissions by mid-century will require global 

power sector investment to surge to roughly $3 trillion by 2030 (almost triple current levels) 

and stay at or near that level for decades.3,10 

A challenge of this magnitude requires 

new technologies and approaches. The 

rapid advances in artificial intelligence 

(AI) have the potential to make a 

meaningful difference.11,12 Indeed they 

are already starting to do so. For 

example: 

▪ AI algorithms are predicting solar 

radiation and wind speeds more 

accurately than traditional 

methods, allowing for better 

scheduling and dispatch of 

renewable energy 
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▪ Dynamic line rating and other AI-driven techniques have started to optimize transmission and 

distribution of electricity, ensuring that renewable energy is transmitted efficiently from 

generation sites to consumers 

▪ AI is facilitating demand response programs by analyzing consumption patterns and 

incentivizing consumers to shift their usage to periods of high renewable energy generation 

▪ AI is accelerating innovation in energy storage, evaluating new battery chemistries far more 

rapidly than traditional methods and accelerating deployment of vehicle-to-grid (V2G) and 

other distributed storage technologies13,14 

These steps are just a beginning. In the years ahead, AI could do much more to help reduce GHG 

emissions from the power sector, including in permitting reform, optimal power flow analyses, V2G 

charging and more.  

At the same time, the rapid growth of AI creates challenges for decarbonizing the power sector. AI 

currently uses less than 1% of electricity generated globally, but power demand for AI is growing 

quickly. In many locations, demand for new data centers—driven in part by AI—is increasing faster 

than low-carbon power sources can be deployed. Power demand from new data centers is creating 

challenges for some utilities that are committed to decarbonizing their generation mix in the years 

ahead. This topic is discussed in more detail in Chapter 15 of this Roadmap.  

This chapter explores how AI can contribute to decarbonizing the power sector. The chapter begins 

by exploring AI’s current and potential impact in decarbonizing four parts of the power sector: (1) 

generation infrastructure, (2) transmission and distribution networks, (3) end-use sectors and (4) 

energy storage. The chapter then turns to barriers, risks, concluding thoughts and recommendations. 

(This chapter mostly uses the term 

“AI” when referring to programs that 

perform tasks through inference of 

patterns and learning from data. In 

the technical literature, the term 

“machine learning” (“ML”) is more 

common.) 

 

 

 

 

 

 

 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

 November 2024  Chapter 3: Power System - 3-4 

  

 

A. Generation 

Planning and operating power generation infrastructure are complex tasks. Many factors require 

attention, including renewable resource availability, permitting constraints and the condition of 

physical assets. AI can help improve performance, speed deployment timelines and cut costs. 

i. Planning 

AI can be especially valuable in planning large-scale renewable projects: 

▪ AI can recommend the optimal size and location of solar power projects, which requires 

complex calculations on topics such as weather patterns, equipment type and grid 

constraints.15,16 

▪ AI can help with wind farm 

planning, which requires complex 

calculations on topics such as 

terrain, wind speed and direction, 

and turbine type.17,18 

▪ AI can help accelerate deployment 

of non-conventional renewables, 

including wave energy19 and 

geothermal energy.20 In geothermal 

energy, AI can help improve 

numerical reservoir modeling, 

exploration, drilling and 

production.19 

Permitting timelines are often a challenge for renewable projects. Large language models (LLMs) can 

extract text from past permit applications and decisions to help applicants improve application 

quality (see Benes et al., 202421 at p. 12–16). LLMs also help permitting authorities review permits 

more quickly and thoroughly (see e.g., Symbium22). At the US Department of Energy (DOE), several 

National Labs have initiated a pilot project using foundation models and other AI to systematically 

improve siting permitting and environmental reviews for renewables projects.23 

AI can also help accelerate innovation in nuclear reactor design, speed the nuclear permitting 

process and cut costs in the operations of nuclear reactors.24 (These topics are discussed in Chapter 

10 of this Roadmap.) 

ii. Operations 

After renewable generation capacity is installed, operational decisions can have significant impacts 

on power output and costs. Predicting variable solar and wind power is one of the most well-studied 

topics in the use of AI in the power sector (see Figure 3-1).25 For example: 

▪ AI can predict weather relevant to wind/solar generation, such as cloud cover,26 wind speed27 

and solar radiation28 
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▪ AI can integrate weather forecasts and power production forecasts (these forecasts typically 

focus on short-term predictions (<72 hours, mostly 24 hours) that rely on robust historical and 

real-time data)29 

▪ Other applications for maximizing renewable power generation using AI include reinforcement 

learning control for wind turbines,30,31 solar system operation29 and solar shading32 

Recent advances in AI-based weather forecasting are especially promising. In traditional weather 

forecasting, numerical models use sophisticated physics equations and historical weather data to 

predict atmospheric behavior. This is computationally expensive, requiring supercomputers for each 

prediction. In newer AI-based weather forecasting, ML techniques are used to train a model on 

historical weather data. Once the model is trained, the computational requirements to forecast 

atmospheric behavior are significantly less than with traditional methods.  

Researchers around the world have made significant performance improvements using these new AI-

based tools. In July 2023, scientists at Huawei Cloud released a paper in Nature33 presenting AI-

driven weather forecasting models that outperformed numerical methods. In November 2023, 

Google DeepMind released a paper34 showing even more accurate results, especially for medium-

range weather forecasts. Government agencies are starting to incorporate these new methods into 

their standard forecasts.35  

As AI-based weather models become more accurate and less expensive, the use cases for these 

types of models will grow. In the power sector, AI-based weather models can increase output from 

solar and wind farms, help prepare for extreme weather events and contribute to system resilience. 

In North America, for example, AI is being used to help predict wildfires, synthesizing satellite images 

and LIDAR feeds in ways that can help grid operators make decisions on managing transmission lines 

through forests during periods of high wildfire risk.36 (See Chapter 14 of this Roadmap, which 

explores how AI can help respond to extreme weather events.) 

 

Figure 3-1. AI predictions in renewable energy. 
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AI can be especially helpful in operating rooftop solar photovoltaic (PV). AI can predict the power 

generation potential of rooftop solar panels,37 generate forecasts38 and reduce customer acquisition 

costs.39  

Federated learning (FL)—a special type of AI—can be very useful in operating distributed power 

generation infrastructure. Federated learning is an AI technique where multiple decentralized 

devices collaboratively train a shared model while keeping the training data on the devices 

themselves, preserving data privacy and security.40 FL is well-suited to tasks such as predicting 

rooftop solar generation41 and can perform a number of tasks in the “smart city” and “smart grid” 

context.42 

AI can also be used for preventive maintenance at power generation infrastructure. Data-driven 

predictions of maintenance and repair needs can minimize cost and production downtime. These 

predictions can be especially useful at wind power facilities, which are often located in difficult 

environments and must endure high wind speed, extreme temperatures and other challenges, 

making maintenance expensive.43 AI can be used to schedule preventive maintenance, reducing 

turbine failure and repair costs.43,44 AI can also be used to improve maintenance at solar,45 nuclear46 

and hydro47 power plants.  

Finally, AI can assist with integrating the electric grid and emerging low-carbon hydrogen networks. 

Green hydrogen production will consume enormous power. Optimizing integration of the electric 

grid with green hydrogen production can deliver significant savings.48 AI can help optimize green 

hydrogen production by predicting renewable power potential,49 curtailed renewable energy50 and 

water sustainability.51 AI can also help plan hydrogen refueling stations, optimizing station-based 

production and storage.52 AI can be used to integrate renewable power with hydrogen-energy 

storage to increase grid stability and lower peak loads.53 

B. Transmission and Distribution 

Investing in transmission and distribution infrastructure is essential for integrating high volumes of 

renewable power into the electric grid. Renewable resources are often located far away from load 

centers, requiring long-distance transmission. Planning and operating this infrastructure involves 

solving complicated nonlinear 

problems. AI tools can help with 

many aspects of electricity 

transmission and distribution—

cutting costs, increasing capacity 

and helping reduce GHG 

emissions.54  

AI can be especially helpful with 

transmission expansion planning 

(TEP). Determining the best 

location and capacity of new 

transmission lines involves large-
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scale complex optimization problems in which finding a feasible solution can be difficult.55 These 

difficulties, along with a large increase in the number of interconnection requests, are causing 

significant delays and uncertainties in permitting renewable power projects in the United States and 

other geographies.  

Several studies highlight the potential for AI to contribute to TEP: 

▪ Borozan et al. (2023) integrated AI with well-established TEP decomposition methods to 

improve computational efficiency while preserving solution quality56 

▪ Wang et al. (2021a and b) showed that AI can be used to solve multi-stage TEP based on a 

static model, which can be flexibly adjusted and incorporate uncertainties in wind power and 

demand projections57,58 

▪ Fu et al. (2020) studied the stochastic optimal planning of distribution networks using AI, 

considering both renewable power and demand variability59 

AI can be especially helpful in optimal power flow (OPF) analysis—an integral part of TEP that 

evaluates the most efficient and reliable flow of electricity through a transmission network while 

meeting operational constraints and minimizing costs. AI can significantly improve the process of 

solving alternating current optimal power flow (AC-OPF) problems by evaluating transmission 

expansion results much more efficiently than current methods.60,61 This improvement not only 

increases accuracy over traditional direct current optimal power flow (DC-OPF) systems but also has 

the potential to make transmission permitting faster. Leveraging AI for AC-OPF can lead to better 

transmission expansion planning, helping reduce emissions from the power system.62,63 

Another promising application of AI is for dynamic line rating -- a method of determining the 

maximum capacity of transmission lines based on current weather and line conditions instead of 

static, conservative estimates.64 Dynamic line rating can increase the capacity of transmission lines by 

at least 30%.65,66 Increasing the capacity of existing transmission lines is especially valuable where 

permitting new transmission lines to bring renewable power to load centers is difficult. AI-driven 

dynamic line rating can help maximize utilization of renewable resources and support integration of 

more renewable power into the electric grid.67  

AI can also help distribution network operations. Historically, the distribution grid was too complex to 

be mapped accurately, leading to difficulties with fault detection. Recent progress in digitalization 

has increased the observability and controllability of the distribution grid, enabling AI to assist in fault 

detection.68 Studies have shown that AI methods outperform traditional methods in fault detection 

accuracy but demand large amounts of data and significant computational resources.68,69 Better fault 

detection can reduce GHG emissions by minimizing downtime, reducing the need for carbon-

intensive backup power and ensuring grid stability, which supports integration of renewable 

power.70,71  

In conclusion, AI is being used in transmission and distribution infrastructure to improve expansion 

planning, renewables integration and core operations. As costs decline and AI capabilities continue 

to improve, AI can play an increasingly important role in transmission and distribution.72 
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Figure 3-2. Power grid with data transfer 

 

C. End-Use Devices 

“End-use devices” include appliances, lighting, electric vehicles (EVs), air conditioning and any other 

equipment that consumes electricity. In 2023, there were roughly 13 billion end-use devices with 

automated sensors and controls globally.73 Better management of these end-use devices can help 

significantly improve energy efficiency and reduce GHG emissions. 

AI can play a central role in managing end-use devices. Indeed, AI tools are essential for leveraging 

the enormous quantities of data from end-use devices into performance gains. AI can predict energy 

demand patterns and adjust device settings to improve efficiency, cut energy use and reduce 

emissions. AI can optimize operation of smart devices, such as appliances, lighting systems and 

thermostats, to ensure these devices consume less energy during periods of high demand or low 

renewable power supplies. AI can facilitate demand response programs, virtual power plants, EV 

charging and peer-to-peer energy trading.  

Demand prediction using AI already exhibits great potential. AI can predict general energy demand 

patterns74 and demand patterns for specific sectors, such as buildings75 and EV charging.76 These 

demand predictions can be used for system operations, including for unit commitment (short-term) 

and system planning (long-term). 

Aside from passively predicting electricity demand, AI can also be used to actively reshape demand 

profiles. In demand response programs, volunteers agree to limit electricity consumption for 
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financial reward. This helps reduce GHG emissions by avoiding the need to turn on peaker plants for 

additional electricity generation. Antonopoulos et al. (2020) reviewed AI approaches for demand 

response, finding that AI can capture human feedback and motivate electricity users to participate in 

demand response programs.77 Demand-side AI tools require significant data with high 

spatiotemporal resolution, which requires enabling infrastructure (such as smart meters) and can 

create privacy concerns. 

AI plays an especially important role in virtual power plants (VPPs) -- networks of decentralized, 

distributed energy resources including end-use devices that are integrated and managed using 

advanced software.78,79 VPPs reduce GHG emissions by helping integrate renewable power into 

electric grids and (like demand response programs) helping limit the need for peaker plants. Many 

VPPs combine AI-driven demand predictions and the ability to manipulate the power demand of end-

use devices:  

▪ Several US states facing peak demand problems have programs to combine consumer assets, 

including home batteries, smart thermostats, EVs and more, into a VPP. By controlling these 

devices in aggregate and making small changes to their operational programming, utilities and 

retailers can shift load from times of peak demand and peak prices, reducing overall costs.80 

▪ In Japan, the Kyocera Corporation has implemented an AI-driven VPP system that aggregates 

energy from numerous distributed sources, including solar panels and battery storage, to 

optimize energy distribution and balance supply and demand in real time.81  

▪ In Germany, Next Kraftwerke operates a VPP that uses AI to manage over 10,000 decentralized 

energy units.82 

▪ One report suggests the savings from VPPs in California could help utilities save up to $755 

million in power system costs, while consumers could save up to $550 million per year by 2035 

if the current trajectory of VPP deployment continues.83 

AI can be especially helpful with EV charging. AI tools can help optimize EV charging station locations, 

predict EV power demand, increase EV charger utilization, schedule EV charging to reduce costs and 

implement V2G programs.84-86 (See discussion of V2G programs below.) 

Finally, AI can help establish intelligent peer-to-peer energy trading platforms and predictive 

analysis.87,88 Peer-to-peer energy can help reduce GHG emissions in several ways, such as by allowing 

households and businesses with solar PV panels to sell excess clean energy directly to other 

consumers and by reducing the distance electricity needs to travel, cutting transmission and 

distribution losses.89,90 

In conclusion, AI could play an important role in managing end-use devices—helping to optimize 

their operation, increase energy efficiency and reduce GHG emissions.  
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D. Energy Storage 

As more solar and wind power is 

deployed, energy storage is becoming 

an essential part of the electric grid. 

Energy storage balances temporal 

mismatch in supply and demand, 

serving as both generation and load. AI 

can help plan for energy storage, 

schedule its operation and optimize its 

lifetime value. AI can also help 

accelerate innovation in energy 

storage. 

Energy storage is growing significantly around the world. In the United States, the investment tax 

credit for stand-alone storage in the Inflation Reduction Act of 2022 creates powerful new incentives 

for utility scale battery storage, and deployment is growing rapidly.91,92 In China, battery storage 

featured prominently in the 14th Five Year Plan (2021–2025), which directed more than 100 billion 

RMB to the market. In 2023, newly installed capacity was nearly 50 GWh, an increase of more than 

60% from the end of 2022.93 In Europe, battery storage installations are led by the United Kingdom, 

Germany and Italy, where policy incentives and high energy prices are creating ideal market 

conditions for rapid deployment, especially alongside renewable power generation.94,95 

Types of energy storage systems include (1) electrochemical storage, such as lithium-ion batteries, 

flow batteries and capacitors; 2) pumped hydro energy; 3) chemical storage, such as hydrogen; 4) 

thermal storage, such as molten salt, paraffin and metals and 5) mechanical storage, such as 

flywheels and compressed air.96  

AI can help integrate energy storage into power grids, predicting when renewable power will be 

curtailed and supporting energy storage scheduling more broadly.50,97,98 AI can also help battery 

owners plan for maintenance and replacement of energy storage assets.99,100 

AI is especially well-suited to energy storage due to the dynamic nature of the optimization needed 

for battery management. Battery storage operators must consider many factors in making decisions, 

including safety, market signals and weather at the site of related solar and wind power facilities. 

Multi-factor models with this level of complexity are well-suited to AI algorithms for finding optimal 

variables on very short timeframes. Many AI algorithms are fast to train and deploy and can be very 

effective in helping operators respond to real-time market conditions to maximize revenue and 

optimize asset usage. 

AI has a range of other benefits for energy storage, including preventive maintenance and 

optimization of consumable components, such as rolling bearings of flywheel-battery hybrid 

storage.101 AI can be used to optimize combined systems, such as those with wind, pumped hydro 

and hydrogen102; integrate price and energy forecasts for hydrogen energy storage operation and 

control103; and (as discussed in Chapter 13) accelerate innovation in battery chemistry. 
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EVs have significant potential as distributed energy storage, sometimes referred to as mobile energy 

storage, V2G or vehicle-to-everything (V2X).104 Aggregated volumes of energy storage in EV are very 

large in scale—many times greater than deployed amounts of stationary storage. Most vehicles are 

parked most of the time. However, to use EVs as grid assets, grid managers must understand and pay 

careful attention to drivers’ use of their vehicles for mobility services, which will be a priority for 

most drivers in most situations. AI can be used for predicting user charging behaviors,105 helping 

solve vehicle routing optimization problems106 and improving V2G performance.107,108 AI can 

maximize the value of data collected from vehicles, facilitating deployment of V2G technologies. 

E. Barriers 

Several barriers limit the adoption of AI for decarbonization of the power sector. 

First, the use of AI in the power sector is limited by poor data quality and governance. The accuracy 

and efficacy of any AI modeling technique depends on clean, well-organized and well-governed data. 

Many parts of the power sector will need to invest in making their data available in an industry-

standard way. The myriad benefits of AI discussed above will be limited unless the underlying inputs 

can be cleaned, organized and deployed in a way that AI models can consume. 

In the United States, for example, standardized data (in tables with descriptions and access points 

that are the same across each organization) do not exist in the power sector today. Utilities, 

independent system operators (ISOs) and regional transmission organizations (RTOs) make data 

available in slightly different ways—across different time horizons, in different formats and with 

different frequencies—thus making it impossible to do analysis across all the relevant players in the 

power system. Private companies and the US Energy Information Administration (EIA) are doing 

some of this standardization work, but getting comparable data sets across all major US regions at a 

granular level remains very onerous from a data engineering perspective. Thoughtful governance to 

reduce privacy risks and model bias stemming from poor quality data is also essential.  

Second, the lack of AI-training in the workforce is a significant barrier. AI’s application in grid 

infrastructure requires a workforce that is knowledgeable on both the electric grid and AI. This 

knowledge base is important for research and development (R&D), technology deployment and 

policy design. The rapid advance of AI in software and technology systems will yield the best results if 

workers are equipped with a baseline of strong technical skills to understand the appropriate and 

safe use cases for AI. 

Finally, poor market design can hinder adoption of AI in the power sector. When market structures 

do not adequately reward innovation or the integration of advanced technologies like AI, utilities and 

other stakeholders may be reluctant to invest in AI-driven solutions. Fragmented markets and 

inconsistent regulations across regions can complicate the deployment of AI, limiting its potential to 

optimize energy systems, reduce emissions and enhance grid reliability.  
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F. Risks 

Deploying AI in the power sector creates a number of serious risks, including those related to bias, 

invasions of privacy, safety and security.  

First, AI can lead to biased outcomes when training data do not accurately represent real-world 

conditions. For example, an AI model trained on power system data without adequate information 

on poor communities could recommend infrastructure investments that fail to adequately serve 

those communities. A model trained on data from the Global North could produce inaccurate 

information or suboptimal outcomes when used in the Global South. Data sets from one region could 

work poorly in another region due to differences in weather conditions, topographies or other 

factors. 

Second, use of AI in the power sector could result in privacy breaches. AI systems require large 

amounts of data to function well. Data collection on topics such as energy consumption patterns and 

customer payment histories may be important for some AI applications but creates a risk of 

unauthorized access, identity theft and related problems. (This risk principally occurs with respect to 

AI in end-use devices and with distribution utilities—not with use of AI in generation, transmission or 

energy storage.)  

Third, catastrophic failures could result if an AI system recommends or makes an incorrect decision 

due to a flaw in its algorithm or an unforeseen situation. Such failures could include equipment 

damage, power outages or worse. Rigorous testing, continuous monitoring and robust fail-safe 

mechanisms are crucial to ensure the safety of AI-operated energy systems. Transparency and 

interpretability of AI models are essential to create trust in AI systems.  

Fourth, AI systems are susceptible to cyberattacks, including adversarial attacks where malicious 

actors manipulate the AI's input data to cause harmful outputs. Such attacks can compromise the 

integrity of the AI system, leading to incorrect decisions that could disrupt power supply, damage 

infrastructure or even facilitate further attacks on the grid. Robust cybersecurity measures, regular 

updates and stringent access controls are essential to protect AI systems from such threats. 

In April 2024, the US DOE released a report on Potential Benefits and Risks of Artificial Intelligence for 

Critical Energy Infrastructure, which found that: 

“while a number of significant risks exist if AI is used or deployed naïvely, most risks can be 

mitigated through best practices, putting appropriate protections around important data and 

models, and in some cases, funding further research on mitigation techniques.”109 

G. Conclusion 

In summary, AI has significant potential to help decarbonize the power sector in several areas. 

▪ Short-term predictions based on time-series data. Predictions of electricity demand, solar 

availability and wind speed are necessary for operating electric grids and power markets. 

These types of data follow certain physical laws and patterns of human behavior but are 
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intrinsically stochastic. Prediction is possible but difficult with conventional non-AI algorithms. 

AI can detect patterns in historical data that improve predictive abilities enormously. 

▪ Scenario development, such as for EV charging and renewable power deployment. These 

scenarios are important to guide grid planning, especially in light of uncertainties related to 

climate change impacts and the deployment of new technologies. If rich historical data are 

available, AI tools can help significantly with these tasks. 

▪ Improving optimization, such as for planning problems. Many power grid optimization 

problems involve work with large, nonlinear models. AI can speed computation, improve 

feature extraction and help solve “optimization unsolvable” problems, such as stochastic 

planning. Data support for these model-based problems is generally less critical than in other 

areas. 

▪ System integration and operation. The grid infrastructure is becoming more and more inclusive 

and increasingly exposed to real-time uncertainties, such as wind/solar fluctuation. Taking a 

systematic view, instead of focusing on certain grid components, is more critical than in the 

past. Furthermore, grid operations have objectives related to cost, reliability, resilience, equity 

GHG emissions. AI shows great promise in helping grid managers understand more complex 

and quickly evolving grid infrastructure. 

AI has potential application in nearly all aspects of power-sector management, including planning, 

monitoring, maintenance and operations. AI is becoming an important tool to help decarbonize the 

power sector. However, AI tools for decarbonization are not yet widely deployed. Barriers must be 

overcome and several risks must be addressed to realize AI’s full potential to contribute to power 

sector decarbonization. 
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H. Recommendations 

1. Utilities and independent power producers should use AI tools for a wide range of purposes, 

including helping to plan renewables projects, monitor the condition of power equipment, 

integrate distributed energy resources into the grid, run demand response programs and optimize 

the use of energy storage systems. In doing so, utilities and independent power producers should 

prioritize rigorous testing, continuous monitoring and robust fail-safe mechanisms, setting 

benchmarks for the transparency of AI systems.  

2. Electricity regulators should create clear regulatory frameworks to support using AI in energy 

management. These frameworks should include rates that provide cost recovery for AI-related 

investments, such as smart meters, sensors and open-source grid management software. The 

frameworks should address risks related to data privacy, safety and cybersecurity. 

3. National governments, electricity regulators and utilities should work together to develop and 

enforce data standards for all aspects of grid operations. Regional governing bodies, such as the 

US ISOs and RTOs, should prioritize standardization of data to enable cross-regional analysis. 

These data should be available in industry standard formats in free and publicly available portals 

for use in AI modeling and research. 

4. Utilities, regulatory agencies and academic experts should work together to develop AI-driven AC-

OPF (alternating current-optimal power flow) models and permitting reforms. These models 

should be used to reduce delays in the interconnection process and accelerate deployment of new 

renewable generation sources to the grid. 

5. Academic experts should emphasize geographic specificity in AI-driven weather models to 

increase the utility of weather forecasting for renewable energy production within specific 

boundaries (e.g., ISOs, climate zones). These experts should develop models that forecast within a 

smaller range than nearby weather station radii, focusing on wind direction, wind speed, solar 

radiation and cloud cover. 

6. Utilities and electricity regulators should launch programs for training workers in the power sector 

to assess and use AI-driven technologies.  

7. National governments should encourage and fund collaborative R&D projects between academic 

institutions, industry and utilities focused on AI and related applications for renewable power, 

energy efficiency and emissions reduction, including AI-driven forecasting tools and grid 

management systems. 
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A. Food Systems and Climate Change Overview 

Food systems—encompassing activities in agricultural production, land use change, supply chain 

activities and waste management—are critical to sustaining livelihoods and delivering nutrition 

worldwide (Figure 4-1). Food systems also contribute significantly to climate change. Recent 

estimates suggest that food systems produce about 30% of annual anthropogenic greenhouse gas 

(GHG) emissions: over 20% of carbon dioxide, 50% of methane and 75% of nitrous oxide.1 Climate 

change, in turn, has a significant and growing impact on food systems. For example, climate change is 

poised to increase heat stress for crops and livestock, accelerate soil moisture loss and reduce the 

nutritional content of food.2,3 The increasing frequency and duration of climate extremes, such as 

severe droughts and extreme rain events, endanger global food and nutrition security.  

 

Figure 4-1. An integrated overview of food systems. Food systems comprise a wide variety of inter-related activities, 

from the production of agricultural inputs (pre-production), food-related land use change, agricultural production 

and fisheries, post-farm-gate supply chains, consumption activities, and waste disposal. Adapted from Rosenzweig 

et al. (2020).4 

A grand challenge lies in transforming food systems to be more sustainable, resilient and equitable, 

while increasing food security for a growing population in the face of climate change. Artificial 

intelligence (AI) technologies and processes offer significant potential to address this challenge by 

enabling more efficient, data-driven decision-making across food system activities. Recent 

advancements in AI, such as deep learning, computer vision, and natural language processing, 

combined with the increasing availability of large-scale agriculture and land use data, have created a 

unique opportunity to harness AI for transforming food systems.5 
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However, AI applications carry significant risks if models are developed and used without 

considerable caution. For example, an AI model trained to achieve a specific target (such as 

improving near-term agricultural yields) could produce results that ignore other objectives (e.g., 

social, nutritional, economic, cultural, environmental or ethical goals). The result could be suboptimal 

or even harmful outcomes.  

Close collaboration between AI researchers, food system experts, farmers, policymakers and the 

private sector is necessary to ensure that AI solutions are aligned with broader goals in sustainability 

and justice. An ideal AI information ecosystem would feature coordination across various nodes of 

information transfer, supported by a series of guardrails and accelerators that ensure AI models are 

adaptive to changing conditions, inclusive of diverse and representative perspectives, and embedded 

in appropriate context (Figure 4-2). 

 

Figure 4-2. A coordinated, adaptive and inclusive AI information ecosystem for food systems. A responsible and 

effective AI information chain is supported by AI acceleration processes (green) as well as process that establish AI 

guardrails (pink). Blue boxes represent examples of specific food systems applications or processes highlighted in this 

chapter. Red boxes represent where different groups of people fit into the picture as nodes of information synthesis 

and transfer.  

This chapter will describe example AI applications at the nexus of climate change and food systems, 

explore key components of an effective and responsible AI information chain, and conclude with 

recommendations for governments, businesses, scientists, international organizations, and civil 

society to ensure the appropriate use of this promising suite of technologies.  
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B. Examples of AI Applications in Food Systems and Climate Change 

i. Overview 

AI applications in food systems run the gamut from establishing early warning systems for pest and 

disease pressure on crops, optimizing energy use during food transportation and storage, and 

enhancing soil carbon sequestration efforts, among other transformational application areas.6-8 AI 

tools are also used to rapidly develop novel alternative protein products with much lower carbon 

footprints than many animal-sourced foods, which are a key source of emissions from food 

systems.9-13 AI-enhanced supply chain monitoring and solid waste management practices—such as 

improved resource recovery through computer vision—can greatly improve circularity in food 

systems and significantly reduce emissions from food waste in landfills (which contributes roughly 8% 

of global anthropogenic methane emissions).14,15 Recent studies show that large language models, 

like GPT-4, perform well on agricultural exams and questions, sometimes outperforming humans.16 

AI models demonstrate potential in supporting agricultural education, assessment, and management 

decisions, offering new tools to assist farmers and agricultural professionals as they navigate novel 

challenges posed by climate change. There are myriad examples of promising use cases for AI to 

enhance food systems decision-making, reduce emissions, and enhance climate resilience. This 

chapter will focus on just a few. 

ii. Remote sensing 

Remote sensing involves synthesizing and analyzing satellite, drone and/or ground-based imagery to 

facilitate a wide array of food systems decisions.17 Use cases span a variety of spatial scales—from 

field level monitoring of crop health, soil conditions, and land use change to regional monitoring of 

agricultural conditions to provide early warning for international trade markets.18,19 There are 

currently roughly 50–100 remote sensing specific foundation models, each with unique architectures 

and strengths.20 In Table 4-1, we break these use cases into three broad categories: object 

recognition, land use identification and temporal monitoring. 

Table 4-1. AI-Enhanced Remote Sensing Applications for Mitigation and Adaptation in Food Systems 

CATEGORY     USE CASE     VALUE 

Object 
recognition 

• Identifying concentrated 
animal feeding operations 
(CAFOs) and landfills 

• Estimating and 
anticipating crop yields 
using satellite imagery 

• To better monitor and account for methane 
emissions from point sources (including from 
food waste in landfills) for improved decision-
making in climate mitigation 

• To improve adaptation planning by accurately 
assessing crop production levels in historical 
conditions and improving satellite-based 
seasonal projections 
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CATEGORY     USE CASE     VALUE 

Land use 
Identification 

• Monitoring soil erosion 
and land degradation 

• Identifying the use of 
climate-smart agricultural 
practices 

• To advance soil carbon sequestration potential 
and land suitability assessments (e.g., to support 
sustainable intensification and reduce land 
conversion pressure) 

• To monitor the prevalence of climate-smart 
practices, such as cover cropping, reduced tillage 
and no-till systems; can also be used to monitor 
and encourage the climate impact of agricultural 
land use through the albedo effect 

Temporal 
monitoring 

• Monitoring coastal 
erosion affecting 
agricultural lands 

• Tracking changes in water 
bodies affecting irrigation 
systems 

• Monitoring heat and 
water stress on crop and 
grassland productivity 

• Tracking the spread of 
plant diseases and pests 
over seasons 

• To facilitate adaptive coastal management 
strategies that protect agricultural areas from the 
impacts of coastal erosion 

• To optimize irrigation management and water 
allocation by monitoring changes in water 
availability and distribution 

• To develop early warning systems for timely food 
security interventions 

• To facilitate early detection and control measures 
to mitigate the spread of diseases and pests, thus 
minimizing crop losses 

 

As the success of OpenAI's ChatGPT demonstrated, applications that connect users with AI models 

are just as important as the models themselves. Figure 4-3 illustrates a tool called Earth Index, a 

product designed to connect users to geospatial AI models to increase accessibility for earth 

monitoring. The tool transforms satellite imagery into machine learning (ML) embeddings and makes 

them interactable by allowing users to select features of interest. Based on the embeddings, the 

model predicts where similar features would be located. After a few labeling iterations, the model 

can accurately predict new features that match. Earth Index has been used to identify illegal gold 

mining in the Amazon, find unregistered concentrated animal feeding operations (CAFOs), quantify 

plastic in landfills and much more. 
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Remote sensing benefits from large-scale, non-invasive monitoring of agricultural land use with high 

spatiotemporal and spectral resolution. Data are frequently updated, with near-global coverage, and 

can be integrated with physical models to enhance decision-making capabilities. However, challenges 

in gathering ground-truth data to validate analyses, combined with difficulties in obtaining 

consistent, high-quality imagery (e.g., due to cloud cover), can significantly reduce the robustness of 

decisions based solely on remotely sensed data.21 The relatively short historical record also limits 

long-term climate change impact analysis. These factors necessitate careful consideration in 

implementing AI for remote sensing in food systems, such as developing human-in-the-loop 

processes as a guardrail. 

iii. Agricultural simulations 

Agricultural simulations, such as process-based climate-crop models, can project crop growth, yield, 

runoff and emissions under various genetic, environmental and management regimes. Process-based 

models form these projections by simulating biophysical processes in both current and future climate 

scenarios.22 These models have been used to optimize yields, improve grain quality, reduce the 

environmental impacts of farming and increase profitability.23 However, crop growth is influenced by 

complex interactions across myriad biophysical factors, and many of these compound effects are not 

yet well-understood, nor are they fully represented in process-based models.24,25 

 

AI Guardrail  

HUMAN-IN-THE-LOOP MODEL AND TOOL 
IMPROVEMENT 
Developing effective human-in-the-loop model-user interfaces is crucial for adopting and using 

AI tools in food systems applications, especially given the diverse backgrounds, expertise levels 

and information needs of end-users in this domain. These interfaces should be intuitive, user-

friendly and adaptable, providing clear and actionable insights while allowing users to explore 

and interrogate the underlying data and assumptions behind AI model outputs. Moreover, 

these interfaces should incorporate mechanisms for user feedback and input. Such features 

would enable users to validate, refine and improve AI model performance over time by 

flagging inaccurate or irrelevant outputs, suggesting new data sources or features, and sharing 

their domain expertise and local knowledge. By actively engaging users in the iterative process 

of model improvement, human-in-the-loop interfaces can build trust, transparency and 

accountability in AI tools. This process would also ensure that such tools are tailored to the 

specific contexts and needs of end users. 
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ML models have emerged with new capabilities to predict global and regional crop yields based on 

climate conditions, satellite vegetation indices and other drivers.26-28 These forecasts can be used to 

estimate regional or national crop production, assess potential supply chain disruptions, quantify 

high-resolution soil organic carbon changes, and guide allocation of resources to support farmers in 

adapting to changing climate conditions.29 ML methods can also benefit from pre-training on 

available data from other crops and regimes or even on synthetic data from process-based models 

when dealing with data-limited crops or regions.30-32 Recent research has experimented with novel 

ways to combine traditional process-based models with powerful ML models, resulting in hybrid 

models that are more likely than standalone ML models to produce plausible predictions when 

exposed to situations outside of the training set.29,33,34 The Agricultural Model Intercomparison and 

Improvement Project (AgMIP) Machine Learning Activity (AgML) is coordinating efforts to build a 

collaborative community, including developing approaches that make the best combined use of 

process-based and data-driven models for agricultural impacts and adaptation analysis.

 

Figure 4-3. Efficient human-in-the-loop learning for AI-enhanced remote sensing analysis. This schematic illustrates 

how Earth Index connects users to interactive geospatial AI models. 
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Precision Agriculture 

OPTIMIZING RESOURCE USE FOR  
CLIMATE-SMART AGRICULTURE 
Farmers can utilize the latest AI advances in remote sensing and agricultural simulations to 

optimize their use of inputs, such as irrigation, fertilizers and pesticides. For example, an AI-

based decision support system for precision irrigation in a lettuce crop used a combination of 

soil moisture sensors, weather data and ML algorithms to optimize irrigation scheduling.35 The 

results showed a 20% reduction in water use compared to traditional irrigation methods while 

maintaining crop yield and quality.  

Reinforcement learning (RL) methods have recently been used to inform agricultural decision-

making based on complex and high-dimensional data, such as historic weather, soil 

information, forecast and remote sensing data. Coupled with crop simulation models, RL 

interfaces can combine to create virtual farms by simulating different crops, weather 

conditions and soil properties.36-39 By simulating a variety of management scenarios, 

researchers and farmers can set customized parameters and optimization algorithms. These 

simulations explore various crop growth and environmental outcomes, aiming to balance 

economic viability, GHG emission mitigation and other elements of environmental 

sustainability in food production.  

AI applications in precision agriculture benefit from the availability of low-cost, reliable sensors 

and internet-connected farm equipment, the increased availability of agricultural drones and 

the growing adoption of digital platforms for farm management.40 However, barriers exist, 

such as high upfront costs of the new technologies, limited data availability in some regions, 

and the need for technical expertise among farmers. Risks include the possibility of short-term 

over-optimization leading to reduced farming system diversity, data privacy and security 

concerns, potential unintended environmental consequences, job displacement, and the loss 

of traditional agricultural knowledge. Additionally, the highly contextual nature of precision 

agriculture systems means that successful AI approaches in one field may not be easily 

transferable to others.  

Simulation models are flexible enough to incorporate multi-modal data (e.g., from remote sensing, 

biophysical crop models, newspaper articles and crowd-sourced images) for more accurate and 

timely predictions, potentially incorporating relationships not captured by current process-based 

models alone. Foundation models trained on large agricultural datasets can be fine-tuned to perform 

well on a diverse range of downstream tasks where data are more limited. However, ML methods 

often perform poorly in conditions different from the training data— for example, data-driven 

prediction models that exploit spatiotemporal correlations often fail to perform well in future years 
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or new locations.41,42 No matter how good a simulation is, it will always be some distance from 

reality, especially in extremely complex systems. Additionally, an uneven distribution of sufficient, 

high-quality data for model validation and training across locations and farming systems, could 

potentially results in inequitable distribution of model performance across geographical regions and 

socioeconomic strata. Further, there is a risk that AI methods rely on spurious correlations, leading to 

inaccurate estimations of intervention effects or physically implausible simulated behavior.43 

 

AI Guardrail 

INCLUSIVE MODEL AND TOOL 
DEVELOPMENT 
To ensure that AI tools are relevant and applicable across diverse contexts, it is crucial to 

prioritize inclusive and iterative AI development. This involves engaging local stakeholders—

such as farmers, extension agents and community organizations—in designing, training and 

validating AI models. By incorporating local knowledge, preferences and priorities into the 

development process, AI tools can be better tailored to the specific needs and constraints of 

different agroecological regions, production systems and sociocultural contexts. Inclusive AI 

development also requires using diverse and representative training datasets that capture the 

variability of food systems across different locations and scales. Initiatives to support collecting 

and sharing localized data from food systems, such as participatory sensing networks or 

community-driven data platforms, can help develop more context-specific AI solutions. 

 

iv. Crop breeding 

Developing crops with increasingly higher yields and enhanced stress tolerance is crucial for feeding 

a growing population in the face of climate change.44 AI can help accelerate the crop breeding 

process.45-49 On the macro-scale, developments in robotics and computer vision have revolutionized 

the collection and synthesis of data on plant size, shape, color and other visible characteristics, 

allowing researchers and farmers to assess crop performance much faster than traditional 

methods.50 On the micro-scale, AI can help analyze genetic sequencing information. The genomes of 

many crops have yet to be fully annotated, which means that their genomes have not been fully 

assembled and functions have not been identified for all genes.51,52 When presented with a genetic 

sequence, AI can help predict gene function, speeding up the annotation process and unlocking 

potential crop improvement targets for diverse species.53 
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Combining macro-level phenotypic data with genetic sequencing information generates rich and 

extensive datasets that link the expression of specific genetic regions to traits displayed in the field 

across various environmental conditions.54,55 Modern AI algorithms are capable of discovering 

strongly non-linear patterns in high-dimensional data. Thus, they can be trained on these datasets to 

predict complex traits of new cultivars in various environments based solely on genomic 

information.56 These predictions are fed into optimization algorithms for autonomous decision-

making (e.g., reinforcement learning algorithms) to optimize critical factors of breeding programs by 

making data-driven choices.57,58 This prediction can cut down on the time and uncertainty involved 

with traditional plant breeding.54  

 

AI Guardrail 

ADAPTIVE DATA COLLECTION SYSTEMS 
Developing adaptive data collection systems is essential for ensuring that AI tools in food 

systems are continuously updated with relevant, accurate and timely data from on-the-ground 

sources. This is particularly important in the context of climate change, where rapid shifts in 

weather patterns, crop yields and market conditions require agile and responsive data 

collection processes. These systems should be designed to collect data from across the supply 

chain on local conditions, practices and challenges. For example, farmers can share data on 

pest and disease outbreaks through mobile apps or online platforms, which can be used to 

refine AI models for precision agriculture and pest and disease modeling. Data collection 

systems should also leverage crowdsourcing and citizen science approaches to gather large-

scale, fine-grained data on food system dynamics, such as food prices, consumption patterns 

and waste levels, which can be used to improve AI models for supply chain optimization and 

food security monitoring. Large-language-model interfaces can gather timely insights into 

emerging practices and challenges under evolving climate conditions. 
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In addition to assisting traditional breeding processes, AI can also be instrumental in supporting 

modern biotechnological breeding methods like gene editing.59 Gene editing techniques make 

precise changes in a crop’s genetic code that lead to a desired characteristic. Well-identified genomic 

information produced with the help of AI, as described above, is key for selecting regions for editing 

that will have a functional effect on the crop. Within that region, AI tools can help choose which 

specific sequence to target for high editing efficacy, as well as ensuring that any potential off-target 

effects are minimized.60,61 AI can also help improve gene editing methods overall by designing new 

proteins for increased editing ability, continuing to evolve the field to be ever more efficient and 

precise.62 

AI applications in crop breeding can significantly reduce costs and time for labor-intensive 

phenotyping. They can also enhance breeding efficiency through early identification of promising 

climate-resilient cultivars and precise design of genetic engineering techniques. However, barriers 

exist, such as limited access to high-quality genomic datasets for under-researched crops, the need 

for substantial computational resources, and limited transferability across different crop species or 

environments given that the complexity of plant-environment interactions cannot be fully captured 

by genetic data alone. Risks include an over-reliance on ML predictions without sufficient field 

validation, the possibility of further narrowing genetic diversity, and the potential misuse of ML-

generated intellectual property. These risks need to be addressed in order to manage further 

consolidation of genetic control in the seed industry and to ensure that generated crop varieties 

effectively support local communities and agroecosystems.  

C. Barriers  

i. Lack of interpretability  

Many advanced AI models operate as "black boxes" to inexperienced users, making it difficult for end 

users to understand how the model arrives at its predictions or recommendations. This lack of 

interpretability can hinder the adoption of AI tools—for instance, a farmer might be reluctant to 

follow an AI-recommended planting schedule or fertilizer application rate without understanding the 

underlying reasoning. Care must be taken to generate accurate explanations of AI recommendations 

wherever possible, as users may be more inclined to trust a model's predictions about crop 

management or food distribution when given some kind of explanation, even if the prediction, or 

explanation, is incorrect.
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AI Guardrail 

GUIDANCE ON APPROPRIATE USE 
Providing clear and comprehensive guidance on the appropriate use of AI tools is essential for 

ensuring their responsible and effective application in food systems. This is particularly 

important given the potential for AI tools to influence critical decisions related to agricultural 

production, supply chain management and policy development, which can have significant 

implications for food security, livelihoods and environmental sustainability. Guidance should 

cover key considerations, such as data privacy and security, as well as potential biases and 

limitations of AI tools. It should also provide practical advice on how to select, implement and 

evaluate AI tools based on specific use cases, user needs and contextual factors. This can 

involve developing best practice guides, case studies and decision support frameworks that 

help users navigate the complex landscape of AI tools and make informed choices about their 

application. Moreover, guidance should emphasize the importance of using AI tools in 

conjunction with other forms of knowledge and expertise, such as local and indigenous 

knowledge systems, to advance a truly context-sensitive decision-making approach. 

 

ii. Limited transferability of agricultural data 

Agricultural AI models are highly dependent on the specific spatiotemporal context in which they are 

trained. Correlative factors established in one location or time-period may not be reliably transferred 

to another due to differences in climate, soil, socioeconomic conditions or management practices. 

Even high-resourced and high-producing regions may experience challenges with model 

transferability due to contextual differences that are not immediately noticeable in the underlying 

datasets. Efforts to enhance transferability— such as the collection and publication of data from 

multi-environment trials, with wide spatial, temporal and production system coverage— are crucial 

for developing AI tools that can support decision-making across diverse contexts. 

iii. Lack of available and accessible agricultural data 

The development of AI applications in food systems often relies on collecting and sharing sensitive 

data, such as individual farm-level information on production practices, yields and financial 

performance. Ensuring the privacy and security of these data is crucial for protecting the interests of 

producers and maintaining trust in AI systems. Furthermore, some datasets may be proprietary, 

expensive, restricted or even classified, and some models may not have open-source code. Clear 

frameworks for data ownership and access rights are necessary to ensure equitable distribution of 

the benefits of AI applications and that producers maintain control over their data. 
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AI Accelerator 

SCALABLE DATA-MODEL DEVELOPMENT 
Integrated and scalable data-model systems are particularly critical for AI applications in food 

systems, given the complexity and diversity of data sources involved. Model developers would 

benefit tremendously from seamlessly integrated data from various stages of the food supply 

chain, including input distribution (e.g., fertilizers, seeds), agricultural production, food 

processing, distribution, consumption and waste management. For example, data from farm-

management systems, precision-agriculture sensors, food-processing equipment and retail 

point-of-sale systems could be harmonized to enable end-to-end visibility. This integration 

could also allow optimization of food systems to effectively reduce food loss and waste. 

Additionally, managers of data systems must build platforms that are deployable at scale to 

handle the massive volumes of data generated by food systems, all while ensuring data quality, 

security and privacy.  

D. Risks  

i. Counterproductive results for some objectives 

AI applications in food systems are often designed to help achieve specific, quantifiable targets, such 

as near-term crop yields. However, this singular focus can lead to damaging results unless a broader 

range of objectives is considered. For instance, an AI decision support system designed to maximize 

immediate crop output might recommend management practices that deplete soil nutrients, reduce 

biodiversity or increase vulnerability to pests and diseases over time. Similarly, AI-driven supply chain 

optimizations focusing solely on improving energy efficiency might inadvertently reduce system 

redundancy, leaving food distribution networks more vulnerable to disruptions from climate shocks 

or other unforeseen events. The challenge lies in developing AI models that optimize across multiple 

and sometimes competing objectives, such as productivity, environmental sustainability, economic 

viability, social equity and long-term resilience to climate change. 

ii. Bias in agricultural data collection 

The quality, availability and representativeness of the data used to train AI models can significantly 

impact their performance and applicability. In research and development (R&D) for food systems, 

data collection bias can arise from self-selection issues, in which only well-resourced producers with 

established best practices choose to participate in data collection efforts or publicize results. This can 

lead to models that are skewed toward better-performing systems and may not accurately represent 

the challenges and opportunities faced by a wider range of producers. Additionally, using data from 

already suitable agricultural areas to predict agricultural production in less suitable environments can 

result in overly optimistic projections and inadequate adaptation planning. 
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iii. Reinforcement of existing societal inequalities 

Adopting AI technologies in food systems may exacerbate existing societal inequalities due to 

unequal access to education, digital infrastructure, data generation, data holdings and financial 

resources. Smallholder farmers and marginalized rural communities may face significant barriers in 

accessing and benefiting from AI tools, such as limited internet connectivity, low digital literacy, lack 

of affordable computing devices and lack of access to AI-enhanced inputs (such as improved seeds). 

Furthermore, many agricultural regions do not have the resources to collect, clean and digitize data. 

This digital divide can widen the gap between well-resourced and under-resourced communities, 

concentrating AI benefits among a small group of already advantaged stakeholders. Efforts to 

promote inclusive AI adoption, such as investments in rural digital infrastructure, digital literacy 

training programs and development of low-cost, user-friendly AI tools, are crucial for ensuring that 

the benefits of AI in food systems are distributed equitably. 

 

AI Accelerator 

COLLABORATIVE DATA ECOSYSTEMS 
Establishing collaborative data ecosystems that bring together diverse stakeholders, including 

farmers, researchers, agribusinesses, supply chain managers and policymakers, can help to 

address issues of data bias, privacy and ownership in developing AI tools for food systems. 

These ecosystems should prioritize creation of shared, interoperable and secure data 

platforms that enable the pooling of diverse food system datasets while protecting the rights 

and interests of agricultural data providers. Collaborative data governance frameworks, such 

as data cooperatives or trust frameworks, can help to ensure that data is collected, shared and 

used in an equitable and transparent manner.  
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E. Recommendations  

Food systems are highly decentralized, with an estimated 570 million farms worldwide, each 

operating in specific agroecological and socioeconomic contexts, challenging the notion of one-size-

fits-all AI solutions. To address the myriad unique issues associated with AI applications in food 

systems and to ensure their responsible and effective deployment across contexts, we recommend 

the following priorities targeted at a range of institutional structures (Table 4-3): 

1. National governments should expand public R&D funding to develop and study AI applications in 

remote sensing, agricultural systems modeling, crop breeding and other high impact application 

areas. 

2. Researchers, industry associations and standards development organizations should collaborate 

to develop and share benchmark datasets, sample algorithms and standard performance metrics 

for AI applications. 

3. National governments and businesses should invest in developing adaptive data collection 

technology, such as Internet of Things sensors and mobile apps, to enable continuous updating of 

AI models with relevant, accurate and timely data. 

4. Academic institutions and research organizations should prioritize inclusive and participatory 

approaches to developing AI models and tools, such as engaging farmers, extension agents and 

community organizations, to ensure that AI solutions are context-specific, user-centered and 

aligned with local needs and priorities. 

5. Professional societies, academic institutions and international organizations should develop and 

promote guidelines, best practices and training programs on the appropriate use of AI in food 

systems, covering issues such as data privacy, model transparency, potential biases, risks and 

limitations. 

6. National governments, private companies and civil society organizations should establish 

collaborative data ecosystems for food systems that have clear frameworks for data sharing, 

ownership and access rights. 

7. Research funding agencies and philanthropy should support interdisciplinary research on ethical, 

legal and social implications of AI in food systems, as well as development of responsible AI 

governance frameworks and accountability mechanisms. 

8. Private companies and model developers should prioritize development of human-in-the-loop 

model improvement approaches, incorporating user feedback and local knowledge to iteratively 

refine AI solutions and ensure their adaptability to evolving climate challenges and food system 

dynamics. 
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9. International organizations and multi-stakeholder platforms should facilitate knowledge 

exchange, capacity building and coordination of AI R&D with a focus on promoting inclusive 

innovation and equitable access to AI technologies. 

 

A responsible AI information ecosystem is based on the principles of true multi-stakeholder 

collaboration, the incorporation of local knowledge and priorities, the prioritization of transparency 

and accountability, and an emphasis on continuous, adaptive improvement. A coordinated approach 

can support the critical transition to more sustainable, resilient and equitable food systems that are 

bolstered against the impending challenges of climate change. 

Table 4-3. Recommendations  

GOVERNMENTS CIVIL SOCIETY 
INTERNATIONAL 
ORGANIZATIONS 

BUSINESS SCIENCE 

Convene consortia 
exchanging food 
system data 

Ensure equitable 
access to AI tools in 
food systems 

Establish oversight 
and accountability 
mechanisms 

Create forums for 
stakeholder 
feedback on AI 
policies  

Support 
participatory 
collection initiatives 
for agricultural data 

Invest in rural 
connectivity 
infrastructure 

Monitor data use 
and privacy issues 

Advocate for 
inclusive and 
transparent data 
governance 

Provide training in 
digital literacy to 
marginalized groups 

Create resources on 
ethics in AI for food 
systems  

Monitor AI adoption 
and impacts 

 

Coordinate global 
data-sharing efforts in 
food systems 

Develop privacy and 
security frameworks 
for data in food 
systems  

Promote inclusive AI 
development 

Facilitate technology 
transfer and capacity 
building 

Identify and fill data 
gaps 

Share pre-competitive 
research and data 

 

Participate in industry 
data consortia and 
standards bodies 

Ensure diversity in AI 
teams and training 
data 

Invest in Internet of 
Things and mobile 
data collection  

Develop scalable, 
accessible data 
architecture  

Co-develop tools that 
help identify barriers 
and limits to 
adaptation 

Develop open-source 
libraries, platforms, 
models and tools 

Study the ethical, 
legal and social 
elements of AI in 
food systems 

Advance 
explainable, 
interpretable AI 
techniques 

Establish model 
evaluation 
protocols using 
open benchmark 
datasets 

Standardize data 
formats for ease 
of interoperability 

Identify and fill 
data gaps 
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The manufacturing sector makes products on which the modern world depends. Billions of tons of 

steel and cement are used in buildings, bridges and roads each year. Chemicals, including ammonia, 

provide fertilizers and other essential building blocks for modern society.1  

At the same time, the manufacturing sector is responsible for roughly one third of global greenhouse 

gas (GHG) emissions. Steelmaking has the largest carbon footprint in the manufacturing sector, 

followed by cement-making and then chemicals. The remaining emissions come from aluminum, 

glass, paper and other light manufacturing.2-5 

Decarbonizing the manufacturing sector will be challenging. Many industrial processes require high 

and sustained heat, which fossil fuels are well-suited to delivering. Some industrial processes, 

including cement-making, rely on chemical reactions that emit CO2. Many industrial products are 

globally traded commodities, subject to significant loss of market share due to small increases in 

production costs.6,7 

Artificial intelligence (AI) is showing promise in helping address the challenge of decarbonizing the 

manufacturing sector. This chapter discusses that potential and explores opportunities for further 

work. 

A. How Can AI Help Decarbonize Manufacturing? 

Consider the following example: AI can play a central role in reducing costs and emissions for electric 

arc furnaces (EAFs)—a key technology for decarbonizing steelmaking. EAFs melt scrap metal using 

electricity instead of coal. Using recycled/circular feedstock, such as scrap, is a core idea that 

pervades the effort to decarbonize all types of manufacturing. This idea introduces a novel challenge: 

how to manage new sources of variability.  

Virgin raw materials are stable. Mining operators control their operations, packaging and shipping 

raw ingredients that meet specific quality criteria. Steelmakers are accustomed to this stability. But 

every batch of scrap is different. One batch of scrap may contain too much of an alloy, another 

possibly too little of it. Modern steelmakers can adjust for this variation by enhancing the scrap with 

costly additives. The most common strategy is simple: plan for the “worst batch” scenario. 

This strategy has led to a consistent, industry-wide overuse of additives. No matter what scrap metal 

comes in, unnecessary amounts of additives are added. The extent of this practice is such that the 

biggest portion of EAF steel’s carbon footprint is the upstream emissions from sourcing these 

additives.8 

AI offers a better approach to this challenge: instead of over-designing for the “worst batch,” AI can 

help steelmakers “adapt to each batch” with predictions that have higher accuracy than traditional 

software systems (Figure 5-1). The idea is to use AI to recommend optimal production settings, 

adapting to the variability in each batch. 

Manufacturing remains a challenging segment of the economy to decarbonize and will require 

significant long-term hardware research and investments. Many governments are sponsoring capital-

expenditure-heavy projects to adopt recycled feedstock, switch to greener sources of fuel, and make 

clever use of industrial heat.9,10 
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AI provides a complementary benefit that is (1) 

available today and (2) can be applied to existing 

manufacturing infrastructure. In many cases, AI can 

be applied today without any capital equipment 

change-out—it is ultimately just an operational 

change. As a result, AI can be orders of magnitude 

faster and cheaper to adopt than deeper 

decarbonization pathways that require significant 

capital expenditures. 

 

 

B. What Are Common Applications of AI In Manufacturing? 

i. Decarbonizing the process of making things 

The steelmaking example highlights one way AI can reduce a manufacturer’s emissions. There are 

many more. Here are a few proven ways AI can help reduce emissions across many sectors: 

▪ Adapt to volatility faster. Manufacturing plants are designed to minimize variation and 

consistently produce high-quality goods. The idea of using data to control quality variation 

dates to Walter A. Shewhart, who established the field of statistical process control at Bell 

Laboratories in the 1920s.11 AI extends the notion of statistical process control, enabling 

manufacturers to adapt to issues more quickly—any amount of time avoided making low-

quality goods reduces scrap and minimizes a plant’s waste and energy usage.  

▪ Adapt to volatility better. Without AI, reducing the time wasted making low-quality 

commodities may be difficult because existing statistical methods may not be accurate enough 

to explain the root cause of production issues. AI-based production can pinpoint the specific 

root cause of an issue in real-time during production. AI’s precision and ability to handle large 

numbers of potential root-cause factors is what drives this capability.  

▪ Avoid past mistakes and enable expertise retention. Over three quarters of manufacturing 

firms are concerned about their aging workforces.12 A primary component of their concern is 

losing the expertise that their skilled workers have amassed at specific manufacturing sites 

(e.g., the exact setting for a temperature for a particular product type). These sorts of insights 

are rarely recorded in an accessible manner, but skilled engineers and operators leave their 

marks in historical production data. Thus, while the experienced operator may know what to 

do in any scenario, a novice may leverage AI to sift through prior production runs and extract 

insights that resemble an issue at hand. AI can map challenges happening today to historical 

periods, filtering out interventions that did not work and focusing on those that did. In this 

way, AI can help new talent perform more efficiently, reducing waste and energy consumption 

during onboarding and beyond. 

 

Figure 5-1. Factories are increasingly digitalizing their 

operations. 
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▪ Improve yield. Production at scale is never 

100% efficient: while 10 grams of 

ingredients may yield 10 grams of a final 

product in the laboratory, 10 tonnes of 

ingredients may yield only 9 tonnes of final 

product at scale. Scaling production 

introduces inefficiencies caused by the 

challenge of operating large-scale 

machinery and prioritizing production 

speed.13 AI can help minimize this yield 

loss. By analyzing historical production 

data, AI can identify unexpected points in 

production where complex operational 

changes may lead to improved yields. AI is 

uniquely suited to learning the 

idiosyncrasies of large-scale manufacturing 

facilities and can provide specific 

recommendations on how to improve 

production yield for each site individually. 

▪ Enable recycling and circularity. Having traditionally relied on high-quality, low-variability raw 

ingredients, many industrial sectors are embracing recycled feedstock to reduce their carbon 

footprint, as well as increasing use of prior components and parts. Both could be considered 

increased circularity, potentially helping with cost, as well as carbon intensity. However, 

recycled and circular feedstocks typically exhibit low quality and certainly have high variability. 

This is the example from the steelmaking case study, with direct parallels in the chemicals, 

aluminum, glass, and paper sectors, among others. Embracing recycled feedstock not only 

reduces emissions during manufacturing, but also relieves demand on mining virgin 

ingredients in the first place. This aligns with the materials-efficiency objective highlighted in 

the sixth assessment report14 of the Intergovernmental Panel on Climate Change (IPCC). 

▪ Minimize energy consumption. Manufacturing facilities are not designed to minimize energy 

consumption; they are designed for safety. This means plants operate with conservative safety 

margins factored into all parts of production. This presents an opportunity for energy 

improvements while maintaining safety standards. This topic is a focus of the fifth assessment 

report15 of the IPCC and serves as an optimization target for AI as well. Digital control systems 

which automatically operate much of the machinery at modern manufacturing sites, can be 

orchestrated using AI to adapt to operating conditions to safely reduce energy consumption. 

Reinforcement learning techniques can explore energy efficiencies in a gradual and safe way, 

exploiting operating set points that provide the biggest energy savings while operating with 

the safety margins that matter. Applications like these can provide net energy emissions 

reductions for plants with no hardware changes needed. 

 

Figure 5-2. AI enables manufacturers to adapt to recycled 

feedstock. Factories typically address the increased variability 

of recycled feedstock by planning for the “worst case” 

scenario; this leads to unnecessary waste and excess 

emissions. Instead, factories can use AI to optimize operations 

and produce equally reliable products with net CO2e 

reductions. 
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▪ Adopt alternative energy sources. In some sectors, such as scrap-based steelmaking, 

production is shifting to using clean electricity, which provides a pathway to shifting towards 

green production. In other cases, however, the switch may not be so simple. In direct 

steelmaking, manufacturers are shifting towards hydrogen, biomass, and carbon capture. In 

cement, the use of alternative fuels at the kiln is steadily increasing, including hydrogen and 

biomass, as well as carbon capture. Adopting alternative energy sources, however, comes with 

its own new source of volatility. Alternative cement fuels can negatively impact clinker quality, 

forcing cement mills to continue using hydrocarbon-based fuels for stability.16 AI can help 

adapt to this new source of variability, enabling an increased, if not full conversion, to newer 

greener sources of fuels during production. 

 

▪ Adopt smaller and quicker batch manufacturing. Batch production, which encapsulates much 

of the steel and chemicals sectors, embodies a tradeoff between size and speed. Larger 

batches offer more opportunity to correct for mistakes and adapt to production issues, while 

smaller and quicker batches use less energy and offer production flexibility. Reducing the cycle 

time—the amount of time it takes to make a batch from start to finish—is a common 

challenge, compounded by the switching between different product types between batches. AI 

can help analyze patterns in high-dimensional historical production data and recommend 

Box 5-1  

CASE STUDY: ALLOY ADDITIVE REDUCTION  
IN STEELMAKING 
In 2022, a Brazilian steel manufacturer using AI achieved 8% reduction in alloy additive consumption. 
This reduction came with a commensurate $3/metric ton cost savings and a 7.5% reduction in 
CO2e/metric ton.17 

This company achieved these results by  

• Acquiring recycled scrap metal for their production 

• Measuring the chemical composition of each batch of scrap 

• Leveraging AI recommendations during melting to add as little (if any)  
additives as possible 

• Predicting the risk of producing each batch of steel, trading off  
potential quality issues with emissions 

• Reducing the quality variation of their final product. 

 
Adopting AI as part of a plant’s operating workflow, manufacturers can  
progressively target high-opportunity use cases within their production. 
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operational set points as production shifts quickly from batch to batch. Reducing cycle time 

comes with direct emissions reduction along with energy minimization, and typically requires 

no hardware changes to the plant. 

ii. Decarbonizing supply chains and adopting dematerialization strategies 

▪ Optimize manufacturing schedules. The production and storage of commodities are driven by 

market demands. Factories optimize their production schedules to minimize order wait-time 

while reducing switching costs between product types or grades. Inefficiencies in scheduling 

lead to superfluous production being stored on-site (leading to unnecessary emissions 

associated with moving large volumes of material) and switching costs (leading to unnecessary 

emissions due to keeping equipment running without producing any goods). AI can help with 

this scheduling process by optimizing complex production schedules to minimize such 

transitions and it can do so at greater speeds and accuracy than manual approaches. AI can 

also help forecast market demands, enabling manufacturers to prepare for anticipated market 

demand ahead of time.18  

▪ Minimize logistics overhead. Manufacturers and shipping companies collaborate to deliver 

billions of tonnes of material across the globe. Handling and routing such large amounts of 

material with precision is a complex operational task. Shipments that are kept in storage 

and/or unnecessarily shuffled around during this process lead to energy waste. Poorly planned 

shipping routes can add to the indirect emissions that come with transporting goods to their 

final destinations. AI can help with this process in two ways. First, AI can optimize shipping 

operations, such as terminals and ports, to minimize container movement while correctly 

loading and unloading shipments from one mode of transport to another. Second, AI can help 

with forecasting both weather conditions and market demand, enabling logistics companies to 

plan and reduce operational inefficiencies.19  

▪ Evaluate and adopt dematerialization strategies. The 6th IPCC Assessment Report highlights 

material efficiency as a key strategy in reducing the carbon footprint of manufacturing. This 

strategy involves increasing circularity of materials used during production, while consuming 

the smallest amount of new ingredients possible. It also involves designing and manufacturing 

of stronger, lighter, and better materials to reduce how much is needed for downstream 

applications. AI can assist with both objectives by targeting production practices that reduce 

waste—increasing stability with recycled feedstock—and precisely matching product 

specifications to production.20 AI can also be used to design materials for easier disassembly 

and recycling. However, material efficiency is not tracked the same way as energy efficiency, 

which poses a systematic challenge in this endeavor.21 
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iii. Decarbonizing the impact of maintaining industrial equipment 

▪ Monitor processes. Industrial facilities are typically designed to operate for long stretches of 

time, ranging from chemical plants that operate with one day of downtime per week, to steel 

blast furnaces that can operate continuously for years at a time. Any unexpected issues or 

downtime cause unnecessary and often preventable additional emissions. Aluminum smelters 

can sometimes unexpectedly fail in a way that releases perfluorocarbons—a potent GHG. AI 

forecasting models can predict when this is about to happen, enabling operators an 

opportunity to proactively avoid such scenarios.22 Similarly, silicon levels in tapped iron of blast 

furnaces can indicate an unexpected cooling of the furnace—but only when it is too late to act. 

AI can forecast silicon levels in a blast furnace, enabling operators to pre-emptively avoid any 

furnace cooldowns that would cause avoidable emissions.23 

▪ Plan for maintenance. 

Scheduling maintenance for 

batch production is 

reasonably straightforward 

since downtime between 

batches can be used to service 

equipment. However, 

continuous-process machinery 

requires regular maintenance 

that causes a reduction in 

capacity, if not direct 

downtime for the plant. Like 

cleaning a filter that clogs over 

time, these maintenance procedures are typically conducted on a regular basis—regardless of 

the state of the equipment. However, as manufacturing plants adopt increasing variable feed- 

and fuel-stock, continuous-process machinery can degrade at wildly differing rates. AI can be 

used to forecast the optimal time to service machinery, thus reducing downtime and the 

resulting unnecessary emissions that come from winding a plant down and up again.24 

▪ Manage alerts at scale. Highly instrumented production sites have thousands of sensors that 

raise alerts if their measurements are out of expected ranges. These alerts can sometimes 

refer to mild warnings that operators can ignore if they know the underlying cause is 

temporary (e.g., a particularly cold or hot day). Other alerts can be critical and require initiating 

costly plant shutdowns and other safety protocols. Handling such alerts, when hundreds may 

be going off at a time, is a challenging task for manufacturing operators. AI can contextualize 

these alerts to help manage them at scale. AI software can automatically detect patterns of 

common alerts that may be used to reconfigure underlying sensor limits. AI can also highlight 

very unusual alerts and raise additional awareness in the rare cases they occur. These 

techniques are already being applied in cybersecurity,25 and can help manufacturing operators 

detect and minimize emissions with better accuracy and speed. 

 
Figure 5-3. Factories comprise thousands of interconnected sensors. 
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C. Barriers  

Several barriers prevent the widespread adoption of AI in the decarbonization of manufacturing. 

They include the following: 

▪ Lack of incentive to decarbonize. A threshold issue is the incentive of manufacturers to 

decarbonize, which can involve expense, market risk, adoption of unfamiliar technologies and 

disruption of longstanding ways of doing business. Regulatory requirements or clear market 

rewards are the two reasons why most factories and logistics companies pursue 

decarbonization, but such requirements or rewards are often lacking. In the absence of 

incentives to decarbonize, AI tools that could help with this process will rarely be considered or 

adopted. 

▪ Lack of investment in digitalization. Manufacturing companies are often—culturally and 

operationally—anchored to the pre-digital era of the industrial revolution. While large 

manufacturing companies are at various stages of embracing digitalization across their 

production and supply chains, small- to medium-sized businesses may need to first invest in 

digitizing their operations. This process may involve installing sensors, connecting them to 

databases, and maintaining an information technology foundation to support connecting all 

parts of the business. 

▪ Low digital literacy. Digitalization requires manufacturers to develop, hire or outsource 

personnel with expertise. Developing such talent in-house involves training internal domain 

experts with data literacy, storage, and manipulation skills. Hiring for digital talent often 

involves recruiting data scientists and data engineers to enhance existing staff in their work in 

this field. Some manufacturers may prefer to outsource such activities to consulting groups 

and other companies that provide such services. 

▪ Need for coordination across large organizations. Adopting AI in day-to-day workflows requires 

buy-in from many stakeholders. Manufacturing companies execute complex workflows that 

can involve up to dozens of departments. Team members must be given sufficient resources 

and time to build trust in AI-based strategies, which in turn should have clear deployment 

ownership. Results should be quantified and shared among stakeholders to further incentivize 

adoption. 

▪ Availability of recycled feedstock. Not every geography and economic market may have access 

to the same levels or quality of recycled feedstock. Individual recycling is an important 

challenge in recycling plastic products.26 Commercial recycling of commodities, such as steel, 

is well established in the United States, Europe, and Japan; similar workflows and markets are 

developing in South America, China, and India. Companies that lack consistent access to 

recycled feedstock may hesitate to adopt workflows, with or without AI, that rely on such 

sources.  
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D. Risks  

The adoption of AI in manufacturing also comes with a variety of risks. 

▪ Increased emissions due to lack of AI maintenance. Factories and logistics change over time. 

Any AI-based system that operates on real-time data must be carefully maintained and 

updated. Static AI solutions carry the risk of quickly producing inaccurate analyses, predictions 

and optimizations, which in turn can lead factories to carry out actions that increase their 

emissions. Factories that fail to adopt the workflows necessary to update and maintain AI 

systems raise the risk working with inaccurate AI systems over time. 

▪ Industrial accidents due to improper use. Factories can be dangerous places. Industrial 

accidents can harm workers and neighboring communities. If properly used, AI can reduce 

risks at factories, but the opposite could occur with improper use. If AI is tested improperly or 

implemented incorrectly or if humans are not kept in the loop, the risk of industrial accidents 

could increase. In adopting AI-based solutions, companies must develop new safety 

procedures with additional training to mitigate the risk of negative human health and safety 

outcomes. 

▪ Use of AI in processes that increase emissions. As a general-purpose technology, AI can also be 

used to reduce costs or speed deployment of industrial processes that increase GHG 

emissions. Regulatory pressure and market dynamics, along with other incentives, are ways to 

minimize this risk.  
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E. Recommendations 

1. Private companies should engage with governments, non-profits and academia to develop, 

release and maintain AI-ready datasets that pertain to industrial operations. This effort should 

leverage best practices for data sharing and hosting. Private companies should encourage those 

interested in leveraging their data to explore high-impact AI applications. 

2. Private companies should develop clear processes to accelerate the adoption of digitalization 

within their organizations, from streamlining vendor evaluation to incentivizing internal adoption 

of AI in high impact use cases.  

3. Technical societies should develop educational assets and programs to increase digital and AI 

literacy within industrial workforces. These initiatives should scale across the workforce, from 

operators up to executives. Emphasis should be on developing a foundational skill set that will 

enable the manufacturing sector to adopt AI-based solutions. 

4. Governments and standards organizations should incentivize market demand for AI-optimized 

products that exhibit increased material circularity and lower carbon footprints. Governments 

should offer financial incentives to adopt such goods. 

5. Governments and academia should develop and deploy education opportunities at the 

intersection of AI and manufacturing as part of computer science and engineering programs. 

6. Governments should incentivize the market of recycled feed and fuel stock to increase their supply 

and reduce their costs. This reduces a barrier for adopting AI to increase material circularity. 
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Road transport is a critical part of the global economy. Current modes of road transport rely heavily 
on fossil fuels, producing roughly 18% of global energy-related carbon dioxide (CO2) emissions.1,2 
Strategies for reducing CO2 emissions from road transport include deploying electric vehicles (EVs), 
using alternative fuels, adopting intelligent transportation systems (ITSs), shifting to shared modes of 
transport and deploying autonomous vehicles (AVs). 

Vehicle electrification is the dominant strategy 
for reducing CO2 emissions from road transport. 
Life-cycle greenhouse gas (GHG) emissions from 
EVs are already significantly lower than those 
from comparable vehicles with internal 
combustion engines. (Emission benefits vary 
based on regional differences in energy 
generation. One recent study found EV life-cycle 
emissions were lower by 66–69% in Europe, 60–
68% in the United States, 37–45% in China and 
19–34% in India.3) As electric grids decarbonize 
and EVs become more efficient in terms of 
distance per kWh and manufacturing materials 
employed, EVs will contribute even more to reducing emissions. Barriers to accelerated deployment 
of EVs include their up-front purchase price and driving range, both of which can be addressed with 
battery and electric motor innovations. 

Other important strategies for reducing CO2 emissions from road transport include:  

 Alternative fuels. The energy properties of biofuels, synthetic fuels, hydrogen and natural gas 
make them attractive options for many kinds of transport, including heavy duty vehicles 
carrying large loads over long distances. 

 Intelligent transportation systems (ITSs). Sensor and communication technologies combined 
with data processing can analyze vast amounts of real-time data to plan, monitor and control 
transit and congestion.  

 Modal shifts. Shifts from personal vehicles to shared vehicles and/or public transport are also 
important for changing the transportation landscape. 

 Autonomous vehicles (AVs). AVs have the potential to reduce CO2 emissions by accelerating EV 
adoption and facilitating platooning, among other changes, but could also increase CO2 
emissions by making it easier to use individual vehicles, leading to longer trips and displacing 
walking, cycling and mass transit.  

Artificial intelligence (AI) has significant potential to help reduce GHG emissions in all these areas. 
Many solutions are still in research and pilot stages but show great promise. To realize AI’s immense 
potential to reduce road transport emissions, AI solutions must be built into commercial products, 
integrated into public infrastructure and deployed in a safe and responsible manner.  

 
Plug-in electric vehicle 
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In this chapter we discuss how emerging capabilities of AI are opening up new opportunities to 
reduce CO2 emissions from road transport.4  

A. Vehicle Electrification 
AI has the potential to play a major role in reducing carbon emissions by improving battery and 
electric motor design, optimizing battery usage and promoting battery recycling. 

i. Material discovery 
One especially promising example is AI’s ability to help improve battery and electric motor design by 
speeding the process of material discovery. Discovering new materials is a complex task comprising 
two core challenges.5 The first challenge involves determining the right chemical components that, in 
combination, exhibit certain desired characteristics and properties. The second challenge involves 
finding a structure that provides a stable solution. The key to this process often lies in reducing the 
very large number of possible solutions to a small number that can be evaluated in real-world 
experiments in a more cost- and time-effective manner.6 AI can increase accuracy when predicting 
the properties of materials and accelerate down-selection of possible solutions.7  

Indeed this is already happening. Google has discovered 2.2 million new crystals—including 380,000 
stable materials—via Graph Networks for Materials Exploration (GNoME). Google researchers 
estimate this discovery is equivalent to nearly 800 years’ worth of non AI-based research, 
dramatically increasing the speed and efficiency of discovery by predicting the stability of new 
materials.8 Major AI-driven breakthroughs and innovations in battery materials—including in nickel 
cathodes, silicon anodes and novel electrolytes—are already increasing capacity and reducing the 
cost of EV batteries.9  

More progress could be achieved through AI investments that support collaborations between 
industry and academia based on data, model and knowledge sharing. Such work is underway at the 
US Joint Center for Energy Storage Research and the European Battery 2030+ Initiative.10  

Similar materials research is being applied to electric motors. A United Kingdom company recently 
developed a rare-earth-free permanent magnet by identifying, synthesizing and testing more than 
100 million compositions of rare-earth-free permanent magnet candidates within 3 months, a 200x 
increase over traditional methods. The process addresses industry challenges, such as supply chain 
security, cost, performance and environmental issues, and the resulting material reduces material 
costs by 80% and carbon emissions by 30% compared to current commercial rare-earth permanent 
magnets.11 

ii. Battery efficiency and lifespan 
AI can significantly enhance battery efficiency and lifespan. With data on energy prices, grid load, 
driving patterns, battery health and other factors, AI methods can optimize charging schedules for 
EVs with reinforcement learning.12 AI-assisted battery charging can cut electricity costs, prevent 
overburdening the power grid, prolong battery lifespans and increase vehicle availability, particularly 
for EV fleet providers.13 AI tools can also optimize the charging process directly while considering 
battery-aging effects and environmental conditions (such as temperature) that prevent chemical 
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aging. Examples include (1) replacing rule-based charging strategies with Bayesian optimization 
combined with a linear-regression prediction model to define an extreme fast-charging protocol that 
maximizes battery cycle-life and reduces the traditional experimental-based approach from 500 to 
16 days and (2) employing adaptive multistage constant current/constant voltage charging strategies 
based on a particle swarm optimization approach.14 

AI-based battery monitoring provides various innovative methodologies to enhance battery 
efficiency and lifespan. Examples include: AI-empowered digital twin technology to create a digital 
replica of the battery system for real-time monitoring and predictive analysis. The digital twin works 
alongside the battery management system, using AI algorithms like long short-term memory (LSTM) 
for precise state-of-charge predictions and time-series generative adversarial networks (TS-GAN) for 
generating synthetic data. This integration enhances the monitoring process, predicts battery 
behavior accurately, and improves overall battery performance and safety.15 Additionally, research 
into driving behavior–guided battery 
health monitoring focuses on the 
importance of incorporating real-world 
driving behaviors into battery health 
monitoring. By evaluating various health 
indicators and their acquisition probability 
under actual driving conditions, the state 
of battery health can be predicted with 
high accuracy. This approach balances 
performance and practicality, ensuring 
accurate and applicable battery health 
assessments in real-world scenarios.16  

iii. Battery recycling and reuse 
Another way to decrease the carbon footprint of EV batteries is to improve recycling and reuse.17 AI 
can improve processes based on pyrometallurgical, hydrometallurgical and biological recycling to 
recover precious raw materials, while supporting diagnostics to evaluate the fit and expected 
characteristics for a second life. Examples of these applications are (1) useful-life forecasting,18 (2) 
machine learning (ML)-enhanced automated disassembly and quality control that integrates 
computer vision and time- series prediction,19 (3) optimal parameter setting for bioleaching 
processes for material recovery based on a random forest regression model20 and (4) applications for 
battery life-cycle, waste recycling and material recovery.21 

 

 
Automotive batteries 
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iv. Bidirectional charging 
AI can play an important role in bidirectional EV charging.22 With bidirectional charging capabilities, 
EVs can deliver power to homes (V2H), businesses (V2B) or the electric grid (V2G). Together, these 
applications are sometimes referred to as V2X or “vehicle-to-everything”. V2X technologies provide 
homeowners and businesses with energy security and help grid managers overcome shortages or 
deliver ancillary grid services. Reinforcement learning algorithms based on user preference and price 
signals are a potent tool for guiding the charging and discharging in V2X systems.23 AI can also be 
used in charge-management systems to guide EVs to charging stations to reduce negative effects 
during peak charging times.24 The mobile storage can also be used to improve energy performance of 
public buildings by using an AI-based V2G strategy to reduce the carbon footprint of buildings 
supported by energy consumption and 
cost predictions.25 

To realize AI’s full potential to contribute 
to vehicle electrification, interoperability 
of AI systems will be important. Defining 
protocols for interoperability of AI 
systems across different EV models and 
charging infrastructures can help ensure 
seamless integration and operational 
efficiency. 

B. Alternative Fuels 
Alternative fuels can play an important role in reducing CO2 emissions from road transport. Synthetic 
fuels and biofuels provide transitional solutions that can leverage existing infrastructure and reduce 
emissions in the near term. Compressed natural gas (CNG) and liquefied natural gas (LNG) serve as 
lower-emission alternatives to conventional fuels, particularly in regions with abundant natural gas 
resources. The optimal mix of these technologies will depend on regional resources, infrastructure 
and specific transportation needs. Each technology has its own strengths and challenges, and their 
importance varies by application and context. These alternative fuels also have applications beyond 
road transport, including in air and marine travel. 

Biofuels can help decarbonize road transport. The most promising applications are with heavy duty 
vehicles, such as trucks carrying large loads over long distances. Although caution is required. When 
feedstocks other than waste biomass are used for biofuels, indirect effects of land use change can 
reduce or even eliminate the GHG benefits of using biofuels. AI can play an important role in 
developing sustainable biofuels. Applications include image segmentation for cell analysis in 
microalgae and modeling time series in the bioenergy conversion process. For new biofuels, AI 
already plays an important role in predicting and optimizing highly complex non-linear bioenergy 
systems. When it comes to producing biofuels from biomass, so far most of the literature involving AI 
focuses on thermochemical processes,26 however biological processes offer a promising research 
direction.27 AI models can also help evaluate biofuel infrastructure requirements and support policy 
making and long-term planning.28 

 
EV fleet charging 
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Synthetic Fuels, also known as synfuels, are produced through chemical processes, such as Fischer-
Tropsch synthesis, which converts carbon monoxide and hydrogen into liquid hydrocarbons suitable 
for vehicle engines.29 Audi’s "e-diesel" is an example of a synthetic diesel fuel produced using 
renewable energy, suitable for standard diesel engines without modifications. The production 
process involves electrolysis to separate hydrogen from water molecules, combined with CO2 to 
create liquid hydrocarbons. AI enhances the efficiency of Fischer-Tropsch synthesis by optimizing 
reaction conditions and developing more effective catalysts.30 AI-driven process simulations help 
identify and mitigate inefficiencies, reducing the carbon footprint of synthetic fuel production and 
usage in road transport. 

Hydrogen Fuel Cells generate electricity by combining hydrogen gas stored in high-pressure tanks 
with oxygen, producing only water vapor as an emission. The Toyota Mirai is a hydrogen fuel cell 
vehicle (FCV) that uses this technology, offering a driving range comparable to gasoline vehicles with 
refueling times of about five minutes. AI optimizes fuel cell design and the hydrogen production 
process, particularly electrolysis, by predicting the performance of materials and operational 
parameters.31 Predictive maintenance and integration with renewable energy sources are enhanced 
by AI, reducing the carbon footprint of hydrogen production and fuel cell operation. 

Compressed Natural Gas (CNG) is a cleaner-burning alternative to gasoline, producing fewer 
emissions and often used in fleets for companies or municipal services. The Honda Civic Natural Gas 
vehicle is an example, featuring a modified engine and fuel system to accommodate CNG. AI 
improves CNG technology by optimizing combustion processes, analyzing real-time engine data, and 
enhancing natural gas extraction and processing.32 AI-driven analytics also help design efficient 
storage and distribution systems, reducing the carbon emissions associated with CNG production, 
distribution and consumption in road transport. 

Liquefied Natural Gas (LNG) is used in heavy-duty trucks for long-haul trucking due to its higher 
energy density compared to CNG. The Freightliner Cascadia is a heavy-duty truck equipped with an 
LNG fuel system, providing a cleaner alternative to diesel-powered trucks. AI optimizes the LNG 
liquefaction process, improves plant performance and enhances routing and scheduling of LNG 
shipments. Predictive maintenance extends the lifespan of LNG infrastructure, while AI-driven 
improvements in the regasification process reduce energy input and emissions, making the LNG 
supply chain more sustainable and environmentally friendly.33 

C. Intelligent Transportation Systems (ITSs) 
AI, sensors and communications networks can be used in combination to manage transportation 
infrastructure. An ITS with these components can help plan transportation infrastructure, coordinate 
traffic, manage EV charging networks and predict maintenance needs. ITSs can adjust digital signs, 
traffic signals and public transportation schedules to react to forecasted congestion. They can 
schedule maintenance to avoid material failure and increase road safety. ITSs have great potential to 
help reduce congestion, optimize vehicle and infrastructure usage, and improve safety while 
reducing emissions from road transport.34 These technologies could be at the heart of a more 
sustainable and carbon-free transportation system. 
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i. Traffic management 
AI can help optimize traffic flow, decrease congestion, enable dynamic traffic-light sequencing, 
suggest smart multi-modal public/private routes and model traffic to foresee and alleviate 
congestion. These AI strategies have substantial potential sustainability benefits, including reduced 
fuel consumption and GHG emissions, which in turn enhance urban air quality and support 
environmental sustainability goals. 

Some cities have implemented pilot studies to investigate real-world implications of using AI for 
traffic management. The city of Phoenix in the United States saw a 40% decrease in vehicle delay 
time after implementing an AI-driven 
traffic management system. In Calabria, 
Italy, a pilot program reduced total travel 
time by up to 55% through adaptive real-
time control of traffic signals for 
connected vehicles (CV).35 Case studies 
have shown that AI-driven traffic 
management systems can reduce traffic 
congestion by up to 30% during peak 
times and 15–20% overall by providing 
45- to 60-minute congestion-prediction 
lead times.36  

AI can predict traffic congestion through advanced analytics by leveraging historical and real-time 
data from various sources, such as sensors, GPS devices and traffic cameras. Techniques based on 
deep learning enable AI systems to learn intricate traffic patterns and accurately forecast congestion 
and traffic anomalies. Real-time data integration allows these systems to provide timely insights, 
enhancing their predictive accuracy.37 AI also plays a critical role in incident detection and response, 
where AI-powered surveillance systems can identify accidents or road hazards in real-time, allowing 
for immediate alerts to authorities and rapid response to minimize traffic disruptions. Dynamic 
routing optimization further helps alleviate congestion by using reinforcement learning algorithms, 
such as Q-learning, to adjust vehicle routes in real-time, thereby optimizing traffic flow and reducing 
travel times. AI-driven traffic signal coordination, exemplified by initiatives like Google’s Project 
Green Light,38 enhances traffic efficiency by optimizing signal timings based on current conditions. 

In public transport, AI can be used to predict passenger loads and optimize schedules and routes, 
enhancing service efficiency and user satisfaction.39 AI’s role in predictive maintenance can also help 
foresee potential infrastructure issues in public transit, preventing failures or delays. In addition, AI 
traffic congestion prediction can be used to schedule increases in public transport capacity. Finally, 
by processing and analyzing ITS data, AI will be able to aid informed policy decisions and strategic 
planning, leading to greener, more efficient public transit systems. Infusion of AI into ITSs is emerging 
as a cornerstone strategy in shifting toward lower emissions and heightened efficiency in public 
transit. 

 
Vehicles connected by intelligent transportation system 
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ii. Data needs 
The data needed for successful AI applications can be provided by static or mobile sensors. Sensor-
driven infrastructure components—collecting and transmitting data—are essential.40 These include 
traffic sensors at intersections or along roadways, smart traffic lights with sensors to monitor traffic 
and pedestrian activity, road weather information systems that track atmospheric and pavement 
conditions, and smart parking sensors that detect vehicle presence. Sensors on bridges, tunnels and 
roads to facilitate predictive maintenance, as well as environmental sensors to monitor conditions 
like air quality and emissions, are also important. In the realm of CVs, sensor-driven infrastructure 
can dynamically integrate vehicle sensors—such as LiDAR, radar and cameras—in ITSs to perceive 
the surrounding environment through edge (distributed) analytics.41 By offering continuous, real-
time data, a sensor-driven infrastructure enables AI systems to significantly enhance operational 
capabilities of infrastructure, helping route emergency services, control traffic and respond to 
demand changes in public transport. However, the massive amounts of data require smart 
integration with cloud-based storage and potentially large computing capabilities that may have a 
negative impact on net emissions.42 

Digital connectivity and emerging technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications, are cornerstones of Cooperative Intelligent Transport Systems 
(C-ITS). Such systems enable coordinated exchange of data for real-time analytics and collection of 
data to train the next generation of intelligent systems.43 New sensors for C-ITS have been shown to 
increase resilience for transportation systems, with immediate impact on operation and 
infrastructure robustness.44 However, interconnectedness between individual vehicles, roadside 
units and central data processing may increase the risk of data exploitation and invasions of privacy, 
warranting new methods for privacy protection in these systems through emerging technologies, 
such as blockchain45 and federated learning.46 

iii. Simulations 
AI-driven simulation has significant potential to reduce road transport emissions, delivering better 
results than conventional algorithm-based simulations by capturing complex patterns and 
relationships in transportation data.47 This can provide a wealth of insights, including in optimizing 
infrastructure planning, forecasting energy demand and evaluating potential transportation system 
policies.48 AI simulations can help identify where investments in charging stations and bicycle lanes 
can best reduce emissions, for example. Linking transportation and energy systems in AI-driven 
simulations can significantly advance the evolution of ITSs, contributing to more sustainable and 
efficient transport networks. A 2021 Latvian study, for example, showed the potential of different 
policy instruments to reduce CO2 emissions 30% by 2030, concluding that more research and a 
tighter coupling between the transportation and energy sectors are needed to reach the ambitious 
goals of the European Green Deal.49 

As simulations become more powerful, more data are needed, and real-world experiences can 
provide the best insights. Communities, utility providers, fleet operators and vehicle manufacturers 
could initiate more pilot projects, such as dynamic traffic light control systems, which leverage real-
time data from GPS, traffic flow sensors, transportation network health and weather updates to 
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optimize the sequence and timing of traffic lights using ML methods. These pilot projects can 
enhance traffic flow, reduce congestion and curtail fuel consumption. However, securing a large 
enough number of participants will be key to gaining meaningful insights. Other initiatives could 
involve predictive maintenance of road infrastructure using sensors that monitor wear and tear, 
schedule preemptive maintenance and mitigate critical failures.50 Such collaborative, large-scale 
projects not only improve transportation efficiency, safety and user experience, but also contribute 
significantly to reducing carbon emissions. 

iv. Foundation models 
As a final consideration, the advent of foundation models, prompted by recent advances in large-
language and vision models, has marked a significant shift in our approach to problem-solving. These 
models, with their capacity to handle multi-modal input and domain-specific expertise, have the 
potential to revolutionize numerous fields. However, their applicability in the realm of road transport 
is relatively uncharted. Potential applications for foundation models may include autonomous driving 
and control of intelligent transportation infrastructure, however their impact is not yet clear.43 

D. Modal Shifts 
Modal shifts—moving from one type of transportation to another—can significantly reduce 
emissions from road transport. Leading examples include shifts from private vehicles to public transit 
and from solo driving to car sharing. Such modal shifts require behavior changes and often depend 
on transit systems that offer an array of mobility options. 

AI can serve as a powerful tool in driving behavioral change that contributes to sustainable mobility. 
AI-driven approaches encourage the use of public transportation in several ways: 

 First, by harnessing AI algorithms to analyze various data sources, AI-driven approaches can 
predict public transit demand, allowing for optimal route planning and strategic relocation that 
enhances the convenience of public transit. 

 Second, by underpinning integrated mobility platforms, which process real-time information 
from multiple transport modes and propose optimal route options, AI platforms can nudge 
users toward public or shared transport. In addition, AI-guided autonomous public transit 
could extend the reach of public transport to regions where traditional services may not be 
economically viable, thus decreasing reliance on private vehicles. 

 Third, by producing personalized recommendations and effective gamification techniques, 
such as reward systems, challenges or social competitions, AI-driven approaches can 
incentivize and engage commuters in choosing sustainable transportation options. 

 Finally, by predicting maintenance issues in public transportation vehicles, AI-driven 
approaches can improve the dependability of these services by minimizing downtime. 
Consequently, AI can make public transportation more efficient, reliable and appealing, playing 
a crucial role in curtailing private vehicle usage and overall transport activity. 

AI can also enable shared mobility solutions, which can significantly cut down on energy 
consumption and GHG emissions.51 
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 AI can help manage shared vehicle fleets, ensuring that vehicles are distributed effectively 
based on anticipated demand, reducing waiting times, and making shared mobility more 
effective and attractive.52 

 AI can also personalize the shared mobility experience by understanding users, suggesting the 
most suitable shared options and facilitating dynamic pricing with prices based on supply and 
demand to balance resource utilization and maintain service attractiveness.53 

 AI-driven predictive maintenance can keep shared vehicles in optimal condition, maintaining 
energy efficiency, reducing downtime and enhancing reliability of shared mobility services.53 

Thus, through these measures, AI can make shared mobility a more appealing alternative to private 
vehicle use, leading to a significant reduction in overall transport activity. 

E. Autonomous Vehicles (AVs) 
One of the most important emerging uses of AI in the road transport sector to date is with AVs.54 AVs 
have made significant progress in real-world deployments, with companies like Waymo and Cruise 
operating commercial robo taxi services in select US cities, while autonomous trucking firms, such as 
TuSimple and Kodiak Robotics, have 
conducted extensive on-road testing.55 
As of 2023, AVs had driven over 80 
million miles on US public roads, 
demonstrating the scale of ongoing 
testing and development efforts.56 
However, widespread deployment 
remains limited, with most 
autonomous vehicle operations 
restricted to specific geographic areas 
and operating conditions.57 

AVs and more specifically autonomous 
electric vehicles (AEVs) have the 
potential to reduce CO2 emissions by 
reducing dependence on conventional, 
individual-owned internal combustion engine vehicles and promoting shared electric and 
autonomous transport. AI can be used to enhance accessibility and convenience, as route 
optimization and vehicle distribution make AEVs that are integrated into shared mobility platforms 
highly reliable and accessible. Furthermore, AEVs can lower operating costs due to their electric 
drivetrains, a benefit that AI can augment by optimizing energy usage. AI also enables AEVs to 
operate more efficiently, through measures such as platooning, smart parking management and 
route selection. This efficiency reduces congestion, energy use and urban space requirements. 
Additionally, the environmental impact is minimized as AEVs produce no tailpipe emissions and AI 
aids in optimizing energy usage. Lastly, AI can facilitate integration of AEVs with public transit, 

 
Autonomous shuttle bus 
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enhancing first-mile and last-mile connectivity, making public transit a more appealing choice and 
further driving the modal shift. 

Studies show that AVs are expected to bring noticeable changes to road transport and, through 
them, reduce environmental impacts and CO2 emissions.58 However, AVs could also increase 
emissions of CO2. 

 Cheap, convenient on-demand mobility may overshadow alternatives, such as walking, cycling 
and public transport. Drivers may be more prone to take longer trips when driving requires 
little attention. The result could be more vehicle kilometers traveled and greater emissions.59 

 In addition, rebound effects can occur when savings from efficiency improvements lead to 
increased demand for a product, reducing or even negating the original savings.60 

 As AVs and smart infrastructure are algorithm-driven, malfunctions could result in significant 
inefficiencies, unexpected behaviors or accidents that require corrective actions, potentially 
leading to additional carbon emissions. 

F. Barriers  
While AI has immense potential to help reduce GHG emissions from road transport, several barriers 
must be addressed to realize this potential. 

A first barrier is lack of data. Data on a wide range of topics are required to deploy AI in integrated 
road transportation systems. Sensors, smart infrastructure and other tools will be needed to collect 
such data. While algorithm development and improved computing hardware are important, near- to 
mid-term advances primarily depend on availability and accessibility of data.  

Second, uniform standards and protocols for sensor data collection and communication are 
essential. In a modern grid, a vehicle can serve as a communication node and operate as a channel to 
interconnect the electricity grid, traffic network and communication network.61 In this context, 
developing common standards in V2V and V2I communication is important for promoting seamless 
interoperability. A standardized communication framework enables vehicles to exchange information 
effectively with their environment. This capability provides additional data that can inform local 
predictions and decision making, reducing emissions while increasing the efficiency and safety of the 
transportation system. 

A third barrier is a shortage of personnel with the needed training in and familiarity with AI. AI 
experts and software developers are needed, but—at least as important—transport operators and 
regulators must be equipped with the necessary skills to consider and evaluate AI options.  

G. Risks 
Using AI in road transport also creates risks that must be addressed. 

First, privacy interests can be threatened by the extensive data collection needed for many 
applications. Those data could potentially reveal a great deal about individuals’ habits and actions. 
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Societal norms are only beginning to be established with respect to collecting, distributing and using 
data in this area. 

Second, using AI in road transport creates risks of bias. For example, training data sets may sample 
more heavily from wealthy neighborhoods than poor ones. Inadvertent discrimination against certain 
groups or areas is possible. Close attention is required to minimize the risk of inadvertent bias 
emerging from use of AI. 

A third and serious risk is higher emissions as a result of deploying AVs, as noted above. AVs might 
lead to far more driving, increasing emissions from driving and vehicle manufacturing.62 

Predicting the impact of AVs on road transport emissions is challenging due to several factors, 
including ongoing technological development, market evolution and regulatory actions. To address 
potential negative impacts, a holistic and sustainable approach to integrating AI in the transportation 
sector is crucial. Careful planning will be necessary to prevent unintended consequences and manage 
potential increases in vehicle usage. 
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H. Recommendations 

Vehicle Electrification 
1. Local governments should promote development and deployment of AI-optimized EV charging 

stations, update building codes that require incorporating such systems in new installations, and 
run public awareness campaigns to educate residents and businesses about the benefits of 
intelligent EV infrastructure. 

2. Industry and academia should form partnerships to drive innovation in AI-enhanced EV 
technologies. These collaborations should focus on developing AI-driven solutions to improve 
battery lifespan, efficiency and recycling methods. 

3. National governments, industry and academia should invest in AI research for battery and motor 
advancements, leveraging HPC for materials discovery; integrating AI methods to enhance 
performance, safety and lifespan; and promoting collaborations such as the US Joint Center for 
Energy Storage Research and the European Battery 2030+ Initiative. 

4. National governments should establish comprehensive regulations for AI applications in EV 
technology on topics including data privacy, usage and storage. These regulations should align 
with global standards to facilitate international cooperation and ensure responsible and ethical 
use of AI tools. 

5. Industry and standards development organizations should work together to develop standards for 
AI applications in EVs, covering topics such as battery monitoring, charging optimization and 
communication protocols. 

Alternative Fuels 
1. National governments should implement incentive programs such as subsidies and grants, to 

encourage AI-driven research and development of alternative fuels. They should also increase 
simulation capabilities to evaluate the life-cycle and infrastructure impact of innovative fuels. 

2. Industry and academia should increase collaborative research efforts to enhance efficiency and 
reduce the environmental impact of alternative fuels based on AI methods, for example by 
establishing innovation hubs and providing funding and support for startups working on AI-driven 
technologies in these fields. 

3. Governments, academia and industry should develop centralized data-sharing platforms where 
researchers can access and share datasets related to alternative fuels to facilitate data exchange, 
enhance research quality and speed up discoveries. 
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Intelligent Transportation Systems (ITSs) 
1. National governments and intergovernmental organizations should establish comprehensive data 

privacy regulations for AI applications in transportation following examples such as the United 
Nations' global AI resolution. These regulations should ensure clear guidelines to safeguard 
human rights, protect personal data and support AI use to mitigate climate impact in road 
transport. 

2. Local governments should invest in smart infrastructure and develop long-term strategic plans, 
implementing procurement policies, conducting public awareness campaigns and investing in 
sensor-driven infrastructure for AI-based real-time decision making. 

3. Industry and standards development organizations should collaborate to establish standards for 
smart transportation technologies, including V2X communication, data security, EV charging 
connectors and harmonized communication networks leveraging 5G and satellite technology to 
ensure integration and distributed interoperability. 

4. National governments, industry, and academia should increase research and data collection for 
intelligent transportation systems to support AI in mitigating climate impact in road transport, 
enabling complex simulations using HPC, and launching large-scale collaborations and pilot 
projects for smart infrastructure development. 

Modal Shift 
1. National governments should allocate funding for AI projects that optimize multi-modal transit 

routes, predict demand and improve shared mobility services, ensuring a streamlined and 
transparent application process for research institutions and private companies to access these 
funds. 

2. Governments, industry, and academia should form consortia to develop AI-driven mobility 
platforms in major cities, integrate pilot projects to test strategies like dynamic pricing and 
optimized public transit schedules, and publish findings for wider implementation. 

Autonomous Vehicles (AVs) 
1. Local and national governments should collect and share data on the GHG impacts of AVs, 

including data on supply chain emissions.  

2. Local governments should develop regulations and run pilot projects to facilitate integration of AI-
driven autonomous mobility solutions that reduce CO2 emissions. 

3. Industry and academia should expand research efforts and develop improved simulation 
capacities to help develop AI-based methods that offer a safe test bed for evolving autonomous 
driving capabilities, focusing in particular on ensuring that AVs help reduce CO2 emissions. 
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The aviation industry is a major sector of the global economy, with almost $1 trillion in revenue in 

2024.1 After a steep decline during the COVID pandemic, airline traffic returned to pre-COVID levels 

in 2024.2,3 The sector has consistently grown faster than the global economy, with an average annual 

growth rate of 5% over the past 30 years.4  

CO2 emissions from the aviation sector were 

approximately 800 Mt in 2022, roughly 80% of 

pre-pandemic levels.5 Emissions from aviation 

grew faster over recent decades than emissions 

from shipping, road or rail.5 Member states of the 

International Civil Aviation Organization (ICAO) 

have adopted an aspirational goal of achieving 

net-zero carbon emissions by 2050.6 In addition to 

CO2, the industry is paying increasing attention to 

non-CO2 impacts, including NOx and methane 

(CH4) emissions. This also includes persistent 

contrails.7,8 While significant uncertainties remain, there is growing scientific consensus that aviation 

contrails result in an equivalent or greater amount of climate radiative forcing as that caused by 

aviation CO2 emissions, making contrails a particularly important area of focus for mitigation 

efforts.9,10 

The aviation industry is no stranger to artificial intelligence (AI) and has adopted AI in many areas. 

However, these uses of AI have primarily focused on areas such as customer satisfaction and cost 

reduction.11,12 Specific uses of AI for emissions mitigation are relatively recent and limited in 

comparison, but they are growing and may have a significant impact in the future. 

A. Use of AI For Emissions Mitigation in Commercial Aviation

i. Improving aircraft design

Aviation’s CO2 emissions are overwhelmingly driven by burning fossil-derived aviation fuel in jet 

engines. The fuel efficiency of new commercial jet aircraft has steadily improved over the past four 

decades (see Figure 7-1), but AI can help to continue this trend. One key approach is using 

AI/machine learning (ML) methods to enhance computational modeling of jet engine combustion 

physics and chemistry, potentially enabling engine designs with improved combustion efficiency.13 

Similar AI/ML techniques can also improve modeling of the advanced methods used to cool critical 

jet engine components (partly replacing the need for intensive computational fluid dynamics (CFD) 

calculations). This can enable development of designs that better balance fuel efficiency with engine 

longevity.14 A related challenge in jet engine design is efficiently predicting the performance of novel 

engine concepts—designed by humans or AI systems—without expensive physical testing. AI/ML 

methods have been used to rapidly develop these performance assessments for next-generation 

turbofan concepts, accelerating the ability of aerospace design teams to efficiently iterate through 

novel designs.15 
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While engine efficiency is a crucial component of overall aircraft fuel efficiency, the shape of 

components, such as wings, fuselage and engine nacelles, can also have a major impact by reducing 

drag. AI/ML methods can help with aerodynamic shape optimization problems, such as designing 

highly efficient airfoil (wing) shapes that provide high lift and low drag and designing optimal engine 

nacelles to reduce drag.16-18. The design cycle for aircraft traditionally includes computational 

simulations that look at how both component shape and turbulent airflow (which often occurs 

during take-off/landing and in some atmospheric conditions) would affect lift and drag, prior to 

performing expensive physical testing in a wind tunnel. Conventional CFD methods are accurate but 

extremely compute-intensive/costly. 

AI/ML methods can dramatically 

reduce the computational 

requirements for modeling turbulent 

(highly complex) flows19,20 and the 

lift and drag of different component 

designs, arriving at equivalent 

solutions more quickly and easily. 

This allows much more 

experimentation and iterative 

design-test cycles.  

 

Figure 7-1. Improvement in fuel efficiency of new commercial jet aircraft, 1980-2020. Credit: The International 

Council on Clean Transportation.21 

https://theicct.org/publication/fuel-burn-of-new-commercial-jet-aircraft-1960-to-2019/
https://theicct.org/publication/fuel-burn-of-new-commercial-jet-aircraft-1960-to-2019/
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The structural materials used in aircraft, such as aluminum alloys, must meet high performance 

specifications because they are subject to high stresses under flight conditions. Understanding these 

stresses quantitatively is challenging. AI/ML 

methods can increasingly be used to calculate 

stresses/loads throughout an aircraft during 

flight and to predict the performance of various 

alloys used in aircraft construction.22 The 

primary use of this method is to ensure aircraft 

safety, but it could potentially lead to the use of 

lighter-weight materials and/or novel designs 

that reduce the total amount of structural 

materials required, reducing aircraft weight and 

thus improving fuel efficiency. 

ii. Optimizing air operations 

Another approach to minimizing emissions from aviation is to optimize the use of the existing aircraft 

fleet, matching specific aircraft to specific routes and passenger demand as efficiently as possible. A 

closely related issue is ensuring optimal airport operations, given changing wind conditions, impacts 

of weather at other airports, and constrained runway count. AI/ML methods have been tested as 

part of the pre-planning phase of air operations, helping assess demand-capacity balancing for 

various runway configurations for US airports.23 NASA and the US Federal Aviation Administration 

(FAA) have begun implementing an AI/ML-based air traffic management planning tool (the 

Collaborative Digital Departure Reroute tool) that can improve projections of runway availability and 

reduce on-tarmac airplane idling time.24 Carriers such as Alaska Airlines and SWISS have begun using 

AI/ML-based systems to optimize real-time flight route planning and general flight operations.25,26 

Other carriers, including TUI Airlines, have begun using AI/ML methods calibrated to individual 

aircraft to develop customized climb rates and speed profiles for lift-off and climb phases of a flight, 

helping reduce unnecessary fuel burn.27 

iii. Reducing aviation-induced contrails 

When aircraft fly through regions of the atmosphere 

that are particularly cold, they can form 

condensation trails (“contrails”), which are 

essentially artificially induced cirrus clouds. Under 

specific meteorological conditions, these contrails 

can persist for many hours and can spread, resulting 

in a net climate warming effect by blocking thermal 

radiation (heat) that would otherwise radiate out 

into space. This effect is quite large, roughly the 

same as warming effects from the CO2 emitted by 

burning jet fuel, although uncertainties remain.8,10  
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Projections for contrail radiative forcing in future years are uncertain but could rise significantly, 

given increased air traffic and an overall shift in flight altitudes.28 

One method for reducing this warming effect is 

“navigational avoidance,” which involves 

predicting where contrail-forming 

meteorological conditions will occur before or 

during specific flights and then redirecting 

aircraft to different altitudes to avoid those 

atmospheric regions. (Because only a small 

fraction of flights generates contrails, the use of 

this method would be limited to a small number 

of flights annually.) The majority of contrail 

radiative forcing can be avoided with 

navigational changes that add only ~0.1% 

additional cost and fuel burn.29,30  

Research is underway to evaluate the use of 

advanced conventional algorithms and remote 

sensing imagery to predict where contrail-

forming regions will occur. This would support 

navigational avoidance (Fig. 7-2). However, 

AI/ML methods may be able to improve on the 

performance of these conventional algorithms, 

particularly by leveraging AI-enabled 

improvements in meteorological forecasting. AI/ML methods have already been developed that can 

detect contrails in satellite imagery, as well as estimate their altitude, using a variety of deep learning 

methods.31-33 Data pipelines based on these methods of detecting contrails can form the basis of 

validation systems to confirm in near-real-time whether a particular flight successfully avoided 

forming a contrail, in some cases leveraging aircraft position data via Automatic Dependent 

Surveillance-Broadcast (ADS-B).34,35  

Google, Breakthrough Energy and American Airlines recently collaborated to demonstrate AI-based 

contrail navigational avoidance in a series of 70 test flights, confirming the ability of this approach to 

avoid contrail formation at a very low cost.36,37 Because contrail navigational avoidance is entirely an 

operational change—there are no capital costs for modified equipment or new supply chain 

requirements—it has the potential to be implemented extremely rapidly. 

iv. Advancing Sustainable Aviation Fuel (SAF) 

A key strategy for decarbonizing aviation is adopting sustainable aviation fuel (SAF), a (mostly) drop-

in replacement fuel for aviation kerosene that is based on non-petroleum feedstocks. As the industry 

assesses novel chemical compositions of various types of SAF, AI/ML methods can be used to predict  

 

   

Figure 7-2. False-color image of aviation-induced 

contrails in the Gulf of Mexico, derived from GOES-16 

imagery. Red circles are major airports (MSY, TPA, 

CUN) and contrails appear as thin, dark-blue lines 

between them. (Credit: Colin McCormick). 
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key physicochemical properties, such as flash point, density and heat capacity, to identify specific 

fuel blends that have high enough technical potential for synthesis and physical testing.38,39 One 

important barrier to using SAF in conventional aviation fuel systems is the presence of nitrile O-ring 

seals in many fuel lines, which are designed to swell in the presence of specific conventional jet fuel 

components. This issue has led to a 50% blend limit of SAF in most current aircraft.40 However, AI/ML 

methods have been used to better understand how different O-ring materials would swell in the 

presence of various different compositions of SAF, potentially helping resolve this issue and 

eliminating the need for the blend limit.41,42 

B. Barriers 

The multiple regulatory frameworks and 

industry standards in commercial 

aviation are a potential barrier to AI/ML 

adoption. These frameworks have been 

developed to ensure safety throughout 

the process of aircraft design, 

manufacture and operations and are 

updated on timescales that tend to be 

significantly slower than the rapid pace 

of advances in AI/ML. If key regulations 

do not keep up with advances in AI, 

they may slow the industry’s ability to 

adopt these emerging technologies. 

Another potential barrier is a lack of technical familiarity with modern AI/ML methods within key 

regulatory agencies, such as the US FAA, the European Union Aviation Safety Agency (EASA) and the 

Japan Civil Aviation Bureau (JCAB). These agencies may lack staff capacity to assess emerging AI/ML 

methods, as well as the resources to train existing staff or hire new talent.  

Encouragingly, some of these regulators have begun actively considering how AI/ML can be used 

within aviation through roadmaps43 and webinars.44 The work to date has principally focused on 

safety, which is appropriate given their core mandates.45 However, if regulators focus exclusively on 

AI/ML safety issues, this may obscure or preclude consideration of opportunities for emissions 

reductions, creating an additional barrier to their use in this context.  

C. Risks 

As with all aerospace design processes, any novel designs for engines, airframe components or 

structural materials that are developed by AI must be rigorously tested to meet safety criteria. 

However, if AI/ML methods identify highly novel designs or configurations, it may be challenging to 

fully test them within existing protocols. If these protocols are not appropriately updated to 

accommodate an expanded range of designs that may result from AI/ML methods, this could create 

safety risks. 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

 November 2024  Chapter 7: Aviation - 7-7 

  

 

When using AI for planning and operations, an AI model may identify highly efficient solutions that 

have less available margin for error than current operational strategies (for example, very tight 

timing for aircraft turn-around or runway reconfiguration). These solutions could make the overall 

system more “brittle” or vulnerable to any unanticipated disruptions. Minimizing the effects of these 

disruptions and fully recovering from them may therefore be more difficult in scenarios in which air 

operations are guided by AI/ML models.  

The use of AI in real-time operations may also introduce cybersecurity risks because of increased 

complexity in the data systems used.46 This is a similar challenge to that encountered when using AI 

in other industries, in the context of real-time decision making for physical assets. Improved testing 

and cybersecurity response protocols are likely needed to manage this risk.  
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D. Recommendations 

1. National governments should expand public research and development (R&D) funding for 

applying AI/ML methods to aircraft design, engine design and aircraft operations, with a focus on 

improving fuel efficiency, enabling the use of SAF, and reducing non-CO2 impacts (including 

contrails). To ensure this funding targets priority areas, the relevant funding ministries should 

enhance the AI/ML expertise of program management staff through training and/or hiring. 

2. Aviation technical societies, associations and standards development organizations should expand 

technical resources available for AI/ML-enabled aircraft design and operations, including 

developing benchmark datasets, releasing sample algorithms and publishing standard 

performance metrics. 

3. National governments should increase the coverage and quality of publicly available 

meteorological data (temperature, pressure, humidity) in commonly traveled air spaces to enable 

improved modeling of the non-CO2 climate impacts of aviation, including contrail formation. 

4. National governments, philanthropy and private companies should collaborate to improve the 

state of the art on digital modeling of atmospheric contrail formation by aircraft, including use of 

advanced AI/ML techniques. High-quality models should be made publicly available. 

5. National governments should require all commercial and private aircraft to track and report non-

CO2 impacts, including contrail formation. This should be through public-facing data portals or 

similar methods that minimize the burden of data collection and computation on the private 

actors covered by these requirements. Aggregated results should be publicly released. 

6. Carbon accounting bodies should update accounting rules to include the full set of climate 

impacts of aviation, including contrails. Private companies with aviation-based supply chains 

should adopt the use of these updated rules in measuring supply chain greenhouse gas (GHG) 

emissions.  

7. National governments should ensure that the regulatory frameworks for approving novel aircraft 

and engine design are compatible with using AI/ML methods and should update them accordingly 

if necessary. Aviation regulatory bodies should collaborate directly on these topics to ensure that 

regulations are harmonized as much as possible across national borders. 
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Building operations generate about one quarter of global carbon dioxide (CO2) emissions. Roughly 

8% are direct emissions from buildings (Scope 1) and 18% are indirect emissions from electricity and 

heat consumed in buildings but produced elsewhere (Scope 2).1 Embedded emissions related to the 

manufacture, construction and demolition of buildings are also significant, potentially representing 

over 50% of life-cycle carbon for new buildings.2 

Artificial intelligence (AI) is already helping reduce the carbon footprint of the buildings sector, from 

design to demolition, with significant opportunities for improving operations and energy efficiency. 

In the future, AI could do much more. One recent study found that adopting AI could reduce energy 

consumption and CO2 emissions from commercial buildings by 8–19% from business-as-usual 

forecasts in 2050.3  

This chapter presents current trends and promising directions to deploy AI in residential and 

commercial buildings, including in heating, ventilation and air conditioning (HVAC) systems as well as 

elevators and other appliances and equipment. The chapter also touches on the interaction of the 

buildings sector with broader urban development elements, including transport. In particular, the 

placement of buildings in relation to other buildings and key infrastructure (such as roads and mass 

transit) will impact a region’s carbon footprint.a  

Significantly, most future building construction and urban expansion will take place in developing 

countries, driven by rising populations, incomes, migration and other forces. These countries present 

different challenges than developed countries for the deployment of AI solutions. 

A. AI for Reducing Building Emissions 

AI can help reduce CO2 emissions generated by a building in ways that cut across the three main 

stages of its lifecycle: design, construction & demolition, and operation. These reductions mostly 

involve increasing the impact of energy efficiency initiatives and other emission reduction activities, 

but they also include activities such as fuel switching and increasing the capacity of buildings to 

produce renewable energy. 

i. Design & materials 

The design of a building and the materials used in constructing it can have significant impacts on the 

building’s carbon footprint. (That footprint includes both the carbon emissions embedded in 

buildings and carbon emitted in their subsequent operations.) This section presents several of the 

many opportunities for AI to help in designing buildings and using such materials. 

 

 

 

 

a  See Chapter 6 of this Roadmap (Road Transport). 
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▪ AI for lower-carbon and sustainable construction materials. AI can help reduce the carbon 

footprint of common construction materials such as steel and cement/concrete.b In addition, 

AI is being used to explore and encourage the use of sustainable construction materials, 

showing a strong potential to reduce the carbon footprint of industrial buildings.5 AI is also 

being used to optimize the use of recycled concrete aggregate.6 

▪ Optimizing the location of building siting. Identifying and quantifying the geophysical, 

ecological (including carbon) and economic properties of potential building sites involve 

integrating many disparate data sources and complex objectives. Explainable AI can help 

quickly process large amounts of data, identifying the properties of potential sites of interest, 

while also revealing new sites that may have been missed by traditional approaches.7 

▪ Optimizing passive design of buildings. The shape, orientation, window-to-wall ratio and 

selection of construction materials are all factors in determining the carbon footprint of 

buildings. AI is being used to quickly and efficiently optimize these design parameters without 

adding costs or reducing comfort. One application in India reported a 46% reduction of energy 

consumption and 8% reduction in discomfort hours.8 

▪ Optimizing ventilation properties of buildings. Indoor ventilation can also help reduce a 

building’s carbon footprint. Designing windows to encourage pressure differences that drive 

natural ventilation typically involves computationally expensive simulations that are beyond 

the reach of all but the most sophisticated building design projects. AI is reducing the barrier 

 

 

b  See Chapter 5 of this Roadmap (Manufacturing Sector), which explores opportunities for AI to reduce 
the carbon footprint of materials such as steel. Sixty percent of the steel used by the construction 
industry is used in buildings.4 See also Chapter 13 of this Roadmap (Materials Innovation), which 
describes how AI could accelerate discovery of new materials, including those that could help reduce 
the carbon footprint of building construction. 
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to designing good indoor ventilation, with one example that optimizes rooms with one-sided 

windows showing a 10× speedup in design time over traditional techniques.9 

▪ Modeling heating and cooling loads during design. Traditional modeling tools enable designers 

to simulate the energy their buildings would require to heat and cool through various HVAC 

systems. The complexity of these tools, along with their computational expense, makes it 

challenging for designers to optimize their designs for energy efficiency. AI has been reducing 

this barrier by offering fast and accurate approximations of heating and cooling loads, 

encouraging designers to adopt energy-efficient options early in the design process.10 

ii. Construction & demolition 

AI offers opportunities to mitigate the climate impact of a building throughout its lifecycle. Once its 

design is finalized and decisions around what materials to use are made, its construction (and 

eventual demolition) offer additional avenues for carbon reduction. This is also an interactive 

process: construction opportunities can influence the choice of materials (e.g., weight of materials 

relative to distance to be transported to the construction site). 

▪ AI for traditional construction and waste management. Construction managers plan, direct and 

coordinate construction projects, ensuring compliance with building safety codes and other 

regulations. Construction technology and software vendors offer a variety of digital solutions 

that help detect defects during construction, perform root cause analysis of issues, and ensure 

workplace safety and compliance. New data sources at traditional construction sites, such as 

image and video data from drones, are creating opportunities for AI to help to better integrate 

and process such data streams, thereby creating opportunities to reduce operational 

emissions and waste.11 

▪ Creating visibility into construction emissions. The carbon footprint of construction activities is 

hard to measure and quantify. A large component is created by heavy machinery, which are 

typically not equipped with direct emissions measurement mechanisms. AI offers a way to 

indirectly estimate the carbon footprint of on-site heavy equipment using accelerometer and 

gyroscope data, creating the visibility necessary to start optimizing operations to minimize 

emissions.12 

▪ AI for accelerating prefabrication methods. Prefabricating buildings, which are manufactured 

off-site in a factory then installed on site, offers a promising pathway to reduce the carbon 

footprint of construction. AI-based robotics are particularly well suited for prefabrication 

facilities, as robots can be installed in the factory and AI can operate them efficiently with high 

throughput.13 AI can also help optimize prefabrication techniques and scheduling,14 while 

simultaneously matching designs to the specific capabilities of prefabrication manufacturers, 

thereby reducing construction times and material waste.15 

▪ AI for reducing quantity and improving management of demolition waste. In South Korea, 

construction and demolition waste represent approximately 50% of total waste, including 

municipal solid waste and commercial and industrial waste.16 AI can enable efficient 

categorization of construction waste from image data, which can increase identification, 
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segregation and reuse of materials in the circular material economy of recycled feed and fuel 

stocks.c  

iii. Operations 

Building operations generate considerable Scope 1 emissions and even larger Scope 2 emissions. AI 

can assist with two strategies for reducing these emissions: lowering demand for heat and electricity 

(both on and off site) d and increasing on-site zero-carbon energy production. 

▪ Optimizing HVAC and other building mechanical systems. Making HVAC, elevators and other 

building mechanical systems operate in a better, more efficient manner would reduce a 

buildings’ carbon footprint. This includes understanding where people are and where they are 

not (e.g., in a commercial building) at different times of the day and adjusting heating and 

cooling accordingly. AI can monitor and enhance HVAC operations at increasing scales, 

incorporating all factors mentioned above.18 But nobody uses systems they do not trust, which 

drives a recent focus to make such AI systems interpretable.19 

▪ Minimizing the energy requirements of appliances and office equipment. Appliances are major 

drivers of energy use in buildings. Governments run a variety of appliance efficiency programs, 

including those that “nudge” consumers to buy energy efficient products (such as Japan’s Top 

Runner and US Energy Star programs). AI can help to make operation of these products even 

more efficient.20 It can also increase information flows through digitalization (including in 

appliances) which can improve the efficiency of buildings. This includes communication 

between appliances and the power system to lower demand from individual appliances at 

times of peak demand that would potentially call on the need for deployment of fossil fuel–

based power generation. These systems already exist (e.g., refrigerators), and AI can improve 

their design and operation.21 One of the expanding sources of demand from within buildings is 

for the servers they contain to power AI and other computational functions. This is an 

emerging issue of concern in efforts to reduce emissions and will require increasing attention 

as the use of AI increases.22 

▪ Raising knowledge regarding existing space usage. AI is enabling building owners, developers 

and investors to better understand and adapt their existing assets to shifting usage and market 

demands. By leveraging data from wireless networks and other sensors, building usage can be 

analyzed and visualized in a way that allows owners to make better decisions for lowering their 

 

 

c  See Chapter 5 of this Roadmap (Manufacturing Sector) 

d  Measures that reduce the amount of energy required to maintain an adequate level of comfort and 
other emissions-related actions should also generate other important co-benefits, such as reducing 
energy poverty by reducing the need of poorer families to consume energy to heat their homes. (See, 
e.g., US DOE 202417). 
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operational carbon footprint and encourage them to consider alternative uses for their existing 

spaces.23 

▪ Automating sustainability reporting. AI-powered cloud-based reporting can help construction 

companies and building operators automatically track their performance and adjust as needed, 

making it easier to measure and transparently report their environmental impact and make 

adjustments to lower impacts, which in turn they can also track.24 

B. Buildings as Clean Energy Producers 

Reducing the emissions impact of buildings involves looking not only at the demand-side aspects, but 

also the capacity of buildings to generate low-carbon energy for use by the building or even 

potentially other offsite consumers. Crafting buildings to produce low-carbon energy can be 

integrated into the various aspects regarding buildings enumerated in the previous subsection, 

including notably their design, as well as the operation of onsite solar and other clean energy 

production capacity. 

AI can integrate additional layers of information (including dynamic hourly data regarding solar 

radiation and the placement of other structures) to build systems that optimize available solar and 

other resources (including wind, geothermal and other).  

In addition, AI can help to better match demand and supply at the building level. Adding the energy 

production dimension to the consumption of buildings increases operational complexity. AI can help 

buildings adapt to dynamic load and demand, optimally allocating clean energy production to 

building demand25 and tightly coupling the specific energy requirements of a building with the power 

it generates and consumes.26 
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FROM BUILDINGS TO TOWNS AND CITIES 
Individual buildings do not exist in isolation but are built and operate within a larger environment that 
includes other buildings, infrastructure (such as roads, bridges and mass transit) and natural terrain. 
The areas around a building can affect its energy usage and emissions. For example, the location of 
nearby buildings will affect the amount of solar radiation a building will receive (e.g., by casting 
shadows). So, in designing a building at a specific site, the surrounding built environment is also a 
factor—one that injects additional complexity. 

This is also true when designing a new block of buildings, such as a townhouse development or a 
commercial building complex. This adds additional levels of complexity. And this complexity is further 
increased when extending it to the construction of new neighborhoods (or efforts to redesign existing 
ones), let alone new cities. Moreover, cities themselves produce higher temperatures than surrounding 
areas, at times up to 4° C higher.27 This increases the demand for electricity for cooling, an anticipated 
major driver of future emissions, as well as presenting the challenge of using materials and urban 
design technique specifically to reduce the extent of this “heat island” phenomenon. 

The computational power of just several years ago provided the ability to address the interaction of 
these larger sets of variables but to a degree that was substantially more limited than what AI can 
provide today. Areas where AI can help when thinking beyond the single building to a block or a 
broader city include the following: 

• Placement and design of a series of buildings (both residential and commercial).

• Structure of utility services, including electricity, water and sewage.

• Design and placement of residential versus commercial and retail services.

• Design of urban transport systems, including bus routes and commuter rail systems, as well as
bike routes (invoking the framework of avoid/shift/improve).

• Operation of heating and other systems, including beyond the single building unit, such as
district heating and district cooling systems.

• Interaction of all the above: the design of new neighborhoods or even entire new cities (e.g.,
in Egypt and Indonesia) provide an opportunity to deploy AI technologies to reduce emissions
and improve sustainability.28

The data-driven insights that AI potentially provides can help make environmental strategies more 
effective, leading to better, more sustainable urban environments. Bibri et al. (2024)29 highlight AI’s 
applications to energy and water conservation, sustainable transportation management, waste 
management and environmental monitoring. 
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C. Barriers

▪ Geography. Significantly, most new construction is projected to take place in emerging

economies and other developing countries. The IEA posits that building floor–area equivalent

to that of the city of Paris will be added every week globally between 2020 and 2030,30 80% of

which will be in emerging market and developing economies (See page 58, IEA’s Energy

Efficiency 202231). Opportunities to apply AI would be squandered if geography is not

considered in this construction, including adapting solutions to the on-the-ground realities in

these countries, such as capacity and financial constraints that typically differ from those in

advanced economies.

▪ Low digital penetration. The degree of familiarity with digitalization and AI techniques within

the building sector (like in many others) will constrain the ability to fully exploit theoretical

opportunities. Closing the gap between the potential and the actual will require raising the

degree of expertise, either in house or alternatively through the use of specialized outside

suppliers. To date, both areas are immature, especially as the potential of AI has, naturally,

outpaced the rate of change in the industry. Digitalization and application of AI techniques

specifically require governments, designers and developers to build, hire or outsource

personnel with expertise. Developing such talent in house involves training internal domain

experts with data literacy, storage and manipulation skills. Hiring for digital talent often

involves recruiting data scientists and data engineers to enhance the work of existing staff in

this field. Some entities within the building sector may prefer to outsource such activities to

consulting groups and other companies that provide such services.

▪ Rapid pace of urbanization. One of the barriers to deploying innovative AI solutions is the rapid

pace at which urbanization is taking place. The pressure of numerous real-world forces driving

increased urbanization are not leaving city planners with the time to adopt new technologies

to optimize emissions. This pressure is compounded by the fact that many of these expanding

urban populations are in countries with limited technical and other capacities, notably in some

of the largest cities in the developing world. This limits time and opportunity required to

develop, vet and deploy AI-based solutions, particularly on construction sites.

D. Risks

▪ Rebound effect. One of the main challenges in using AI to reduce emissions related to the built

environment is the possibility of a rebound effect, namely that the improved efficiency

afforded by AI will lead to greater consumption that negates the emissions gains generated by

AI.

▪ Distracting from other decarbonization strategies. AI is a “high-end” approach that has the

possibility to distract from less sophisticated but more attainable approaches. AI is good but

not if you deprioritize more accessible technological solutions (such as improved insulation,

etc.) that can generate, in practice, a stronger impact (particularly in developing countries and

settings with some of the capacity issues described above).



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 8: Buildings Sector - 8-9 

  

 

▪ AI in energy production brings operational risks. AI dependent systems present operational 

risks. While HVAC, appliances and other systems can generate important emissions savings, 

they are also exposed to software and internet-based operational, safety and security risks.  

▪ AI can justify decisions that are worse than alternatives. AI can be used to “optimize” a 

solution of a particular input that results in a larger life-cycle carbon footprint for the building 

than an alternative. For example, AI can be used to marginally reduce the carbon footprint of 

using a particular construction material (e.g., cement) while an alternative material (with or 

without the use of AI) would have led to a lower overall carbon footprint (e.g., one that 

involves lower transport emissions). Failing to move toward lifecycle approaches can result in 

AI being misapplied to produce the mirage of emissions gains (an issue that also affects non-AI 

interventions). 
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E. Recommendations 

1. Governments at all levels working with the private sector should identify and pilot AI-supported 

technological improvements in design, materials, construction and demolition that reduce the 

embedded carbon in buildings. 

2. National governments should develop research and development programs for AI improvements 

in emissions efficiency of building operations (including HVAC systems, lighting, elevators and 

other mechanical systems). Municipalities should explore more restrictive commercial-building 

energy use and emissions standards (including for Scope 2 emissions) that become attainable 

through AI. These efforts should combine a “pull” strategy of government support paired with a 

“push” effort of more restrictive norms. 

3. Public and private construction organizations should engage government research agencies, 

academia and the nonprofit community in providing support for developing and deploying AI. 

Sharing data, encouraging the development of standards and best practices, and creating venues 

for dissemination and discussion of these results can help accelerate development and 

deployment of AI in this sector. In particular, using AI to build more sophisticated life-cycle 

analytic tools can help optimize AI’s impact and reduce the possibility of its misapplication. 

4. Governments, the private sector and professional associations should develop a platform to 

disseminate best practices regarding improving digitalization and other data collection to support 

the deployment of AI to reduce building energy use and emissions (including Scope 2). This 

platform should be tied into the areas of action for AI identified under recommendations 1, 2 and 

3. These groups should also work with suppliers to increase the availability and improve the 

affordability of related sensors and other equipment. 

5. Multilateral development banks, national/bilateral organizations and other donor agencies should 

develop a program of technical assistance and funding to increase the capacity of stakeholders 

both (1) to develop domestic AI innovation programs for the buildings sector in urban areas and 

(2) to implement AI-enhancements, whether designed locally or abroad. AI in the buildings sector 

should be adapted to the opportunities and constraints presented by developing economies, 

including designing and deploying technology-appropriate solutions (such as low-tech approaches 

where country conditions present constraints), as well as encouraging data gathering in those 

geographies. 

6. Governments, in association with city associations and academia, and supported by international 

development agencies, should identify and develop one or more urban development pilot 

programs to explore using AI to lower embedded carbon and operational emissions. The new 

cities being built in emerging economies (such as Indonesia’s new capital, Nusantara) provide a 

possible opportunity for targeted cooperation between donor agencies, such as the World Bank 

and Japan’s JBIC, together with developing-country national and municipal authorities (e.g., 

Egypt’s new administrative capital). 
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Carbon capture is an essential technology for climate change mitigation. Analysis by dozens of 

organizations, most notably the Intergovernmental Panel on Climate Change (IPCC)1 and the 

International Energy Agency (IEA),2 confirm the need for carbon capture to decarbonize key sectors 

(including steel, concrete, chemicals and aviation). As global greenhouse gas (GHG) emissions have 

continued to rise in recent years, carbon capture has received growing acceptance and been 

featured in international agreements, including the Dubai Consensus3 and Sunnylands Agreement.4  

Many governments, including those in the United States,5,6 the European Union,7,8 China9 and 

Germany,10 have included carbon capture as a key strategy to help achieve ambitious climate targets. 

National and international carbon capture programs include grants and loans for project 

demonstration, fiscal incentives (including tax credits and contracts for differences), infrastructure 

investment and robust investments in innovation. As a consequence, the number of operating and 

announced projects have increased significantly.11,12 

 
Figure 9-1. Components of the carbon capture value chain including technology and infrastructure elements. 

 Source: IEA, 202413 

The field of carbon capture includes many forms of technology and cuts across many energy and 

climate sectors.14 The core technology sets include many parts (Figure 9-1): 

▪ separation of CO2 from points source, the air and the ocean;  

▪ transportation of CO2, including pipeline construction and operation, barges, ships and trucks; 

▪ storage of CO2 in dedicated geological formations, including saline aquifers, depleted oil and 

gas fields, and basaltic formations; 

▪ conversion of CO2 into new building materials, chemicals and fuels and 

▪ removal of CO2 from the air and oceans using biomass and minerals as vectors for removal and 

storage to achieve climate neutrality15  

Carbon capture systems can reduce the GHG footprint of existing fuels (e.g., bioethanol, aviation 

fuels), feedstocks (e.g., hydrogen) and energy sources (e.g., natural gas, biomass), as well as provide 

critically important climate services independent of energy production.  

Despite some core technologies being quite mature,16 integrated carbon capture systems are not 

widely commercialized and new technologies—including novel electrochemical means of CO2 

conversion and direct air capture operations—enter the field often. Although the costs for some 
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applications are modest (below $50/tonne CO2), others are substantial (>$100/tonne CO2),17 

prompting decision makers to support means of reducing capital and operating expenses. 

Small wonder, then, that AI could improve many aspects of this field, including technical elements 

(efficiency, performance, environmental benefits), commercial aspects (cost, routing) and policy 

concerns (equity and justice, resource allocation). The literature on AI applications in carbon capture 

is young, but the potential for AI to improve carbon capture appears significant, based on both 

primary manuscripts and reviews.18,19 

This chapter describes some promising applications of AI in the broad field and specific subfields of 

carbon capture, including specific recommendations for key actors in climate and energy. 

A. Capture Technology 

Separating CO2 from industrial waste streams, ambient air or the oceans requires chemical, physical 

or electrical processes, such as electrical-swing adsorption, humidity-swing adsorption and phase-

change systems. These processes use chemical agents (e.g., liquid solvents and solid sorbents), 

functional components (e.g., contactors and membranes), well-functioning reactors and integration 

with other systems. For each of these steps, AI can play a role and already has begun to do so. 

i. Materials discovery and functionalization 

AI can assist in discovering new materials with properties that enable profound improvements in 

energy use, efficiency, strength and other key properties.20,21 (See Chapter 6 of this Roadmap.) 

Carbon capture is particularly well suited for these approaches,22 in part because of the key role 

materials (including liquid solvents, solid sorbents and membranes) play in CO2 separation. AI speeds 

up the discovery of new materials23,24 that can improve performance, including in the CO2 loading of 

chemical systems, heat capacity,25 energy consumption in CO2 regeneration and longevity. In 

particular, metal-organic frameworks (MOFs) have proven well-suited to discovery through AI tools, 

which can collapse the range of possible materials into promising options in terms of structure, 

composition and design.26 

However, having a library of suitable materials will not lead to deployment if the materials are not 

made or functionalized. AI has proven helpful in prioritizing which materials to fabricate and test 

based on their estimated performance, but benefits of these materials cannot be realized until they 

are built into filters, monoliths and other gas-contact media. AI has already proposed ways to 

improve functionalization (e.g., ways to structure solid sorbents to improve loading and 

performance).27 Studies that demonstrate how AI can enhance manufacturing and functioning of 

other materials (e.g., carbon nanotubes28) show promise for carbon capture materials, as well. Given 

the very large range of approaches to manufacturing and functionalizing carbon capture materials, AI 

could help identify processes and pathways with high performance and chance of success. 

ii. Novel capture system 

AI can also accelerate development of novel processes for capture, regeneration and CO2 conversion. 

Many novel processes are still designed through trial and error, including novel fluidized bed 

reactors, use of ionic liquids and dual-function processes that perform both CO2 capture and 
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conversion to chemicals like methanol. AI has proven useful in accelerating system design and 

testing—for example by helping identify and improve a novel regeneration process 

(electrochemically mediated amine regeneration).29 Exploration of these process engineering and 

design options is only at the earliest stages. 

iii. Capture system operation, optimization and integration 

AI tools have already been applied to manufacturing and industrial production processes to good 

effect. (See Chapter 5 of this Roadmap.) Carbon capture systems can benefit from similar 

applications. This includes the use of digital twins of existing or planned facilities to assess and 

implement tools for efficiency gains. One study found that, by improving clean electricity delivery 

from the grid, AI tools could help carbon capture systems improve capture rates by >16% and reduce 

energy use by >35%.30 Additional approaches include efficiency improvements through heat 

integration and reactor design optimization. Another study used AI to better optimize temperature, 

pressure and composition to enhance CO2 solubility to increase uptake and reduce energy costs.31 

These tools have the potential to dramatically improve system performance, reducing capital cost, 

operating expense and energy consumption (Figure 9-2).  

Figure 9-2. An example of an implementation of machine learning (ML) for a CO2-capture process. (A) Simplified flow 

diagram of an absorbent-based CO2-capture process. (B) Illustration of an artificial neural network serving as an ML 

algorithm to correlate the reboiler-specific duty (Wreboiler) and CO2-capture rate (Qcaptured) as model outputs to the key 

operational parameters, including the flue gas temperature (T), CO2 fraction (XCO2) and flow rate (Qfg), and the 

absorbent flow rate (Qab) as inputs. Source: Rahimi et al, 2021.27 

B. Transportation and Storage 

i. Transportation 

Once captured, CO2 is moved to storage sites using a mix of approaches, including pipelines, ships 

and barges, and trucks. AI tools have already begun to help governments, private industry and 

communities develop plans for CO2 transport that maximize CO2 volume while minimizing cost and 

risks.32,33 One study in China—a country with many large point-sources and very few CO2 pipelines—
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estimated total cost and network size for pipelines could be reduced by 12.5% using AI tools,34 

reducing embodied carbon emissions in fabrication and construction, as well as capital cost. 

ii. Geological storage 

Manipulating fluids in deep geological formations involves uncertainty, inference, interpretation of 

monitoring tools and making choices that require trade-offs. For geological storage of CO2, critical 

uncertainties can involve the presence or absence of storage porosity (pore volume), the 

permeability of storage formations, the ability of overlying units to trap CO2, and connectivity 

between units, across rock bodies and faults. In some cases, local data (field scale) and regional data 

(decades of exploration and production) are abundant and can help shape key choices. In other 

cases, geological data are scarce and operators face greater uncertainties. 

AI can help in both cases. Where data are relatively abundant, workers have used AI to assess critical 

components of CO2 storage systems, including geological storage efficiency,35 trapping and overall 

site performance,36,37 and monitoring38 (Figure 9-3). In locations with lower data quality or volume, 

studies have used synthetic data volumes to train AI.39 Although initial results have been impressive, 

the lack of large data volumes risks generating hallucinations in greenfield sites or frontier basins, 

requiring greater human intervention and validation. Finally, AI can serve to identify prospective new 

sites for CO2 storage—an approach piloted by Microsoft40 and others, where data availability may be 

either abundant or scarce. 

   

Figure 9-3. A representative process flow for using machine learning (ML) systems to predict and manage 

performance of subsurface CO2 storage systems. From Thanh et al., 2022.37 
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AI approaches are likely to prove useful and accurate for traditional energy companies with large, 

complex in-house data sets. Already, industry has begun to pursue research and operational 

collaborations using AI tools. For example, Total Energies has partnered with Cerebras41 and IBM42 to 

identify and de-risk high-quality CO2 storage sites. Similarly, Halliburton has developed an AI based 

analytical system to understand subsurface risks,43 which could be used to predict the performance 

of geological CO2 storage systems. In some cases, these specific tools began as means to optimize oil 

and gas production and have been converted or modified for geological CO2 storage (e.g., optimizing 

CO2-enhanced oil recovery (EOR) for oil production or for geological storage with AI).44,45 These serve 

as an example of how AI only delivers climate benefits when asked to deliver them. 

C. CO2 Conversion to Products 

Like CO2 separation, CO2 recycling and conversion processes involve chemical agents and materials, 

functional components (e.g., contactors), and fit-for-purpose reactors. AI can play similar roles in 

these endeavors as it plays in capture technologies, including material discovery, reactor 

optimization and system integration. Opportunities are many and broad,46 involving direct chemical 

synthesis, biological intermediaries, novel reactors and materials, and mineralization (Figure 9-4). 

 

Figure 9-4. Potential applications of AI for CO2 conversion and recycling, including subdisciplines of high interest. From 

NETL.47 

▪ Chemical reduction of CO2: Many CO2 recycling pathways begin by converting CO2 (carbon 
dioxide) to CO (carbon monoxide) or other simple organic compounds, such as methanol 
(CH3OH). AI has already discovered special materials and processes that chemically reduce 
CO2 through electrocatalysis,48 photocatalysis,49 enhanced biological processes50 and multi-
phase thermal catalysis.51 
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▪ Novel chemical synthesis: AI has begun to recognize novel approaches to making compounds 
out of CO2. This includes turning CO2 into starches, proteins and complex hydrocarbons.22,52,53 
One intriguing use of AI involved identifying “dual-purpose” materials that combine capture 
and conversion in one chemical step.54,55 

▪ Characterizing waste and input streams: Industrial and municipal waste streams are often 
complicated mixes of many materials, compounds and substances. In some cases, these 
waste streams have substantial fractions of reactive compounds that could be well-suited to 
mineralization or other CO2 utilization pathways.56 AI can simplify and streamline these 
wastes for improved use.57 

D. Other Carbon Capture, Utilization and Storage (CCUS)-related AI 

Applications 

A cross-cutting technical concern with deploying carbon capture, utilization and storage (CCUS) 

involves accurately characterizing and understanding the full life-cycle assessment. Since new CCUS 

facilities commonly require energy, materials, land, construction and water, it is important to both 

understand the likely life-cycle implications, including both construction and operational phases, as 

well as to identify potential pathways to improve life-cycle. In the case of some CO2 utilization 

pathways, this can be particularly complicated, as they include multiple supply chains and complex 

displacement pathways. AI can help provide life-cycle analysis, including initial life-cycle estimates, 

assessments of improvement opportunities and quantification, and trade-offs in design and 

operation of facilities between cost, carbon intensity and key environmental attributes (e.g., water 

consumption).58 

AI could also help address non-

technical issues associated with 

deploying CCUS. For example, existing 

facilities may need to update air or 

water permits when retrofitting for 

carbon capture or use. This process 

can be cumbersome, with long 

timelines and high expense. Similarly, 

permits for CO2 storage wells require 

substantial data and analysis and are 

often backlogged. AI, including both 

large language models (LLMs) and 

digital twinning, could help facilitate both drafting and reviewing of permits, reducing time and costs. 

AI could help prepare the necessary written documents to receive tax credits for carbon storage or 

utilization under programs such as those in the US Inflation Reduction Act.59 

Finally, AI can help ensure that local stakeholders do not suffer environmental burdens or health 

risks associated with CO2 pipelines or siting other carbon capture facilities. Specifically, AI can help 

assess and provide environmental baselines60 and monitor changes in the environment61 from 

construction or pollution. AI can help consider the trade-offs in CO2 transportation options, including 
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cost, risks and environmental burdens. Initial work at the US National Energy Technology Lab (NETL) 

and the US Environmental Protection Agency (EPA) suggest potential AI applications and tools to help 

planners, regulators, investors and community stakeholders develop projects of all kinds in ways that 

are equitable and just. 

E. Barriers  

In addition to the many barriers confronting CCUS, increasing adoption and use of AI in CCUS 

presents specific challenges. The first and most critical issues, as is often the case, are data-related, 

including access, quality and volume. Data access involves the availability of specific compounds 

(catalysts, sorbents, solvents), reactors and facilities that might benefit from AI applications, which 

are likely to be limited due to intellectual property constraints, operational security and other 

commercial concerns. Data quality issues are related, including ensuring accurate metadata 

population and tracking and avoiding duplication of results and analyses, which require time, 

attention and specific coding to resolve. Data volume issues will most likely involve insufficient data, 

especially given the relatively small number of operating CCUS companies and facilities. While these 

could be overcome over time, these issues will likely prove challenging in the near- to mid-term. 

The second set of challenges 

are workforce-related. CCUS 

broadly faces workforce 

shortfalls,62,63 which are likely 

to be compounded by lack of 

training or familiarity with AI 

tools, methodologies and 

potential application. Although 

some corners of the CCUS 

enterprise are relatively 

familiar with AI tools and 

approaches (e.g., molecular 

discovery, digital mirroring), 

many groups in the ecosystem and value chain are unlikely to have the facility and sensibility to seek 

or employ AI-based tools today, whether for permitting or for reactor design. 

F. Risks 

Some of the barriers described above may manifest specific risks of AI use. For example, the lack of 

data for some applications could lead to generation of pseudo-data, which can increase the chance 

of hallucinations or simple errors. Similarly, the lack of trained workforce could introduce bias and 

fail to recognize specious results (e.g., in financial or regulatory affairs).  

Some risks, independent of other barriers, could prove substantial. Since almost all CCUS projects 

and developments are taking place in countries within the Organization for Economic Co-operation 

and Development (OECD), geographic bias is an enormous risk, ranging from estimated costs to 
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permitting ability or climate justice concerns. This could prove particularly true for subsurface studies 

and planning, where lack of subsurface data in key geographies or applications (e.g., in situ 

mineralization) could limit the ability of AI tools to generate useful and accurate results. Since 

geology varies greatly from region to region, misapplying Ai results could prove devastating to 

project success, which in turn might risk the CCUS enterprise.  

Such risks could be mitigated at relatively low costs through a combination of management, training 

and review, but they would most likely require additional human and financial resources, which 

could prove hard to find. 
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G. Recommendations 

1. National governments and private companies should expand current research, development and 

demonstration (RD&D) programs in carbon capture to include AI methodologies, with 

commensurate increased funding.  

a. Specific use-inspired research topics would include material discovery (especially sorbents 

and solvents for carbon capture), functionalization of materials, and novel reactor design 

(including catalysts for CO2-to-products). They should consider prioritizing efforts beyond 

simple material discovery and focus on more applied and operational aspects of CO2 capture. 

Near-Medium term 

b. Applied research topics could include optimizing systems (including heat integration, use of 

digital twins, minimization of heat and electricity demands) and designing key infrastructure 

pathways (including location, size and operation for CO2 transportation and storage design), 

operation and MMRV (measurement, monitoring, reporting and verification)). Near and 

medium term, with near term emphasis. 

c. Government granting entities must hire and/or train personnel that are sufficiently trained 

and knowledgeable to be able to review AI-related proposals well. Near and medium term. 

2. Asset owners, utility owners and operators, industrial manufacturers and key state-owned 

enterprises should use AI tools and methodologies to accelerate assessment of CCUS pathways for 

existing and planned assets. This should include cost-benefit determinations in comparison with 

other decarbonization options, with the goal of establishing a ranking of opportunities. Near 

term. 

3. National governments should use AI, including LLMs and other generative AI platforms, to 

streamline permitting processes for carbon capture in all forms. This includes permitting wells for 

CO2 injection and processing pipeline rights of way, power electronic designs, and processing 

revisions to air permits for facility retrofits. Near term. 

4. National governments and private companies should use AI to improve resource characterization 

for carbon capture, with emphasis on characterizing geological storage resources. AI-enabled 

resource characterization should extend beyond bulk storage terms and volume estimates to 

include understanding of injectivity, permeability fields and risks posed by pre-existing wells. 

Where possible, national and state governments and some private companies should make data 

available for training, either through voluntary sharing and federation or mandates. Near term. 

5. Professional societies, academic experts and carbon accounting bodies should launch training 

programs on the potential for AI in carbon capture. This could include use of AI for life-cycle 

assessments of carbon capture systems, as well as the RD&D topics stated above. Near and 

medium term. 
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6. National governments, private companies and academic researchers should immediately 

commence with identifying key data requirements for enabling AI in carbon capture. Once 

identified, these three groups should work to gather, federate and share these data while 

providing fair, judicious access. Near term. 
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Nuclear power provides low-carbon, dispatchable power in large quantities. It has the potential to 

contribute significantly to achieving the goals of the Paris Agreement.1 At the 28th Conference of the 

Parties to the UN Framework Convention on Climate Change (COP28) in December 2023, 25 

countries pledged to triple their nuclear power capacity by mid-century. 

Meeting this pledge will be a challenge. High costs, public opposition and other factors have limited 

the growth of nuclear power for decades. Indeed in 2023, nuclear power output globally was two 

percent below its 2006 peak.2 China leads the world in new nuclear power capacity but has added 

only 2–3 GW per year—a stark contrast with the 210 GW of new solar power capacity added in China 

last year.3 Japan has reopened only 12 of the 53 reactors that were operating before the 2011 

Fukushima accident.4 New nuclear reactors recently opened in the United States for the first time in 

eight years.5 Germany has closed its last reactors, and Spain may soon follow.2,6 France—which leads 

the world in the percentage of nuclear power on the electric grid—has seen extensive delays and 

cost overruns in constructing a new reactor type (the European Pressurized Reactor) and may 

replace some nuclear reactors with solar and wind power.7 Many developing countries aspire to 

nuclear power but lack the resources, and the political situation in many developed countries 

remains murky. All this taken together has resulted in the global share of primary energy that comes 

from nuclear sources remaining flat at about nine percent in the last few years.2 

If nuclear power is going to make a bigger contribution to the world’s growing energy needs, the 

industry will need to reduce the time and cost required to build new reactors and to optimize 

operations of legacy reactors and new models. One way to accomplish this goal is to harness 

technological improvements from outside the nuclear industry, such as artificial intelligence (AI).9 

AI could raise the productivity of 

reactors already in service, increasing 

their annual hours of operation. It 

could reduce the amount of uranium 

enrichment these reactors require, cut 

the volume of nuclear waste they 

produce and assist in evaluations 

needed to extend their lives. AI could 

also cut the cost of electricity 

produced by new reactors by 

optimizing the design of their cores. 

Proponents are hopeful that AI could 

shorten the time needed to license 

new reactors, reduce the staffing 

requirements for those reactors and 

eliminate unnecessary radiation 

exposure to plant staff. 
Figure 10-1. Boiling water reactors at the Enrico Fermi Nuclear 

Plant in Newport, Michigan, USA.8 
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AI could be a key part of a “faster/better/cheaper” approach. 

But there are barriers to these potential contributions. One is that existing nuclear plants are largely 

analog and create far less data than digitized industries do. Also many nuclear databases are 

proprietary and may not be in a usable form. In addition, regulators are quite conservative about 

incorporating new tools into nuclear design and operations. (These problems are related. One reason 

legacy reactors in the United States do not have large databases of their performance is that the US 

Nuclear Regulatory Commission (NRC) has held back licensees’ efforts to digitize controls.)  

AI is a fast-moving technology; nuclear power is a slow-moving industry with especially slow-moving 

regulators. AI has just begun to demonstrate its value in operating nuclear power plants. Whether AI 

can ease or speed deployment of additional nuclear reactors remains unclear.  

This chapter explores how AI could add value in the nuclear power sector. The chapter explores AI 

applications in operating reactors, advanced reactor design, nuclear waste management and the 

nuclear regulatory process, discusses barriers and risks and offers nine recommendations. 

A. Operating reactors

AI can help improve operations in a number of ways at nuclear reactors that are already operating. 

The US Department of Energy’s (DOE’s) Idaho National Laboratory has suggested that AI can support 

nuclear power in the following ways: 

▪ “Detecting process anomalies in a nuclear power plant before they develop into significant

events

▪ Automating paperwork activities of nuclear power plant operators by applying natural

language processing methods to documents that are generated daily

▪ Applying classical and machine learning (ML)-based image processing to automate manual and

visual tasks in a plant

▪ Creating risk-informed predictive maintenance strategies for nuclear power plants that are

based on predictive models developed to monitor an identified plant asset

▪ Developing intelligent operator aids to enhance the operator’s ability to monitor nuclear plant

systems and components

▪ Preventing and managing corrosion

▪ Creating virtual operators to run simulations so reviewers can identify human factors that

affect performance”10 

The US Electric Power Research Institute has observed growth in the deployment of sensors and 

other instruments at nuclear power plants. These tools provide a vast amount of information about a 

nuclear power plant’s operational status. This growth of information about operational performance 

provides an opportunity to use AI tools to increase reliability and efficiency.11 



ICEF AI for Climate Change Mitigation Roadmap 2.0 

November 2024 Chapter 10: Nuclear Power - 10-4 

i. Fuel management

One consulting firm (Blue Wave) has been using AI since 2016 to reduce the number of fuel 

assemblies needing premature replacement at boiling water reactors (BWRs). The firm also uses AI 

to help find sensors whose out-of-calibration readings could have led to shutdowns or reduced 

energy production.12,13 

The design of BWR cores is complex due to uneven water density between the top and bottom 

(more of the water is steam near the top). AI may be better than humans at specifying optimum 

distribution of the more fissile type of uranium within the core, allowing full power operation until a 

refueling outage and ensuring the fuel is completely used up at the time of scheduled refueling.13 

AI can avoid another problem: having to 

replace a fuel bundle early because the bundle 

does not have enough energy potential left to 

last until the next scheduled refueling. 

Replacing assemblies early increases the 

volume of nuclear waste. Blue Wave says it 

has saved 110 assemblies across the 16 units 

that use its software. (BWRs have between 

300 and 800 fuel assemblies.)  

ii. Sensor and camera readings

AI can also optimize reactor operations by analyzing sensor readings. In one instance, a utility 

reported that its reactor was producing more and more steam and was projected to exceed its 

licensed limit within days. The utility proposed to insert control rods to reduce energy output. 

Instead, using a digital model and AI tools, Blue Wave concluded that of the 172 sensors that 

measured power in different spots in the core, 7 were giving inaccurate readings. (In-core sensors in 

a BWR have limited lifetimes.) Turning off the inaccurate sensors allowed the utility to calculate that 

it was operating well within its thermal limits, and the plant avoided losing production.13 

Blue Wave sees other potential uses for AI: 

▪ Nuclear plants make extensive use of security cameras, but human beings do not always notice

what the cameras capture

▪ AI does not get bored and could categorize everything on the screen, sorting the images as

normal or not normal and flagging the ones that need human attention

Likewise, plants use remotely controlled cameras to scrutinize reactor vessels and other 

components. AI could be taught to look for images on screen that merit follow-up and flag them for 

human operators. Both these examples are machine assistance to human decision-makers, and as 

such, proponents say they may avoid triggering NRC licensing requirements.13,14 This is important 

because reactor owners are reluctant to make any changes that force them to go to regulators for 

license amendments or other rulings. In the United States, changes that require NRC approval can 

take a year or more and cost a licensee thousands of dollars in NRC review fees. 

Figure 10-2. Boiling water reactor fuel bundle.8 



ICEF AI for Climate Change Mitigation Roadmap 2.0 

November 2024 Chapter 10: Nuclear Power - 10-5 

iii. Operator tasks and robotics

Other companies have been developing AI tools for use at nuclear power plants. NuclearN15 provides 

products to automate the tasks and challenges operators typically face. The idea of automating 

nuclear operations and maintenance dates back to the 1980s.16 Some labeled the “lack of 

intelligence” the Achilles heel of nuclear robotic technology. But today, AI is driving configuration and 

operation in robotics in sectors ranging from automobile manufacturing to household vacuum 

cleaners and from medical surgical equipment to aerial drones used in agriculture and defense. AI 

can enhance the functionality, versatility and precision of robots. AI-powered robots can have 

advanced software, computer vision and decision-making capabilities that allow them to operate 

more autonomously and effectively than those not powered by AI. In some nuclear facilities, AI-

controlled unmanned platforms (e.g., quadrupeds, such as SPOT)17 are already at work. 

These developments are gradually being 

ported to the nuclear sector, with a focus 

on robotics first and software second. The 

United Kingdom’s Research and Innovation 

agency sponsored a five-year research 

program at this interface.18 The European 

Union’s Robotics for Inspection and 

Maintenance project focused on nuclear 

facilities.19 The Organization for Economic 

Cooperation and Development’s Nuclear 

Energy Agency has an ongoing initiative 

focused around decommissioning,20 while 

recent nuclear robotics deployments in 

Japan have been well documented.21 

These initiatives and deployments encourage research into the modifications needed to adapt these 

technologies to nuclear requirements. Some examples of research at this interface include: 

▪ A semi-autonomous pipe-cutting robot in radiological environments22

▪ The role of AI in remote glovebox operations in nuclear settings23

▪ AI for nuclear decommissioning projects24

iv. Corrosion

Material corrosion is one of the nuclear industry’s great challenges. Annual costs from corrosion-

related aging and degradation due to radiation exposure are significant, even for advanced metals 

(e.g., Zircaloy). The risks and challenges with corrosion have increased as reactors’ licenses are 

extended, demanding longer and better performance from plants and operating systems.  AI could 

help extend the lifetimes of reactors already operating and improve operations in reactors now being 

designed, saving operators cost and reducing maintenance outages (planned and unplanned). 

Figure 10-3. Nuclear power plant control panel 
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Materials discovery presents a terrific opportunity for AI-driven improvements in nuclear power, as 

in other fields. (Chapter 13 of this Roadmap discusses this opportunity in depth.) This is particularly 

true with respect to advanced alloys used in pressure vessels, specialty welding and reactor 

claddings, which can be damaged by direct radiation exposure and interaction with advanced 

coolants (e.g., molten salts). Discovery of new alloys or optimal production of existing alloys could 

deliver significant improvements and would likely have applications to both reactor design and waste 

storage systems.  

The same is true for AI applications in process and control systems. For example, using operational 

data from sensors and controls, AI could help detect corrosion earlier and improve maintenance 

cycles. (Chapter 5 presents similar applications of AI within the manufacturing industry.) 

v. Life extensions

In many countries, nuclear power plants face challenges due to declining prices of electricity in 

wholesale markets, driven by technical improvements in competing sources of energy and subsidies 

for them. AI can help reactors meet this financial challenge by cutting the cost of producing 

electricity in a nuclear plant, by improving fuel utilization (using less and wasting less), reducing 

unnecessary shutdowns and making it more feasible to extend the life of a reactor. 

Indeed at nuclear reactors that are 

currently operating, AI can help analyze 

the potential for life extension. For 

example, AI can help measure the extent 

of radiation damage to concrete—a 

prerequisite for life extension. The 

aggregates used in concrete often include 

quartz, and when quartz is hit by a 

neutron, its structure is damaged. 

Technicians can use a technology called x-

ray computed tomography to look deep 

inside concrete structures and see the 

extent of damage. However, the images 

are low contrast, and the work is so 

tedious that the accuracy of a human 

analyst interpreting the images may not 

be high enough. Researchers at DOE’s 

Oak Ridge National Laboratory have used 

AI to scan the images more accurately.25 

Figure 10-4. AI can manage nuclear processes efficiently. 
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ARTIFICIAL INTELLIGENCE (AI) CAN SAVE 
NUCLEAR FUEL  
As discussed above, when operators of a US boiling water reactor (BWR) saw that sensors indicated 
power levels were rising beyond license limits, they thought they would have to change rod patterns 
within a few days to reduce energy production. However, they used AI to determine that 7 of the 92 
sensors were giving inaccurate readings and that excluding them from analysis of the core would 
improve accuracy. They kept power at 100 percent, just below the license limit.  

Engineers’ initial analyses of the cores of several reactors showed that they would have to replace 104 
assemblies after just 2 cycles, rather than the standard 3, but AI analysis of just how many megawatt-
hours of energy each fuel assembly in a BWR had actually produced allowed operators to leave them in 
place for a third 2-year cycle. This reduced their costs and the volume of nuclear waste.  

B. Advanced reactor design

AI can assist in designing advanced nuclear reactors.26 

i. Thorium-Fueled Fission Reactors

Thorium is a radioactive element whose main isotope, Th-232, is four times more abundant than 

most uranium and about four hundred times more abundant that U-235 (used in nuclear fuel).  The 

current favored design for thorium-fueled reactors is a molten salt-cooled reactor, in which the 

thorium fuel would be mixed directly with the molten salt coolant.27 The design does not use cooling 

water, a distinct environmental advantage, and is believed to have a smaller risk of core damage 

compared to water-based nuclear reactors. Other advantages include low risk of weaponization or 

proliferation, high efficiency, high-temperature heat generation and reduced production of waste.28 

China has built a thorium reactor, and other nations are considering it as well.29 

AI could potentially contribute positively to many aspects of thorium reactors. AI could optimize fuel, 

coolant and reactor design against multiple objectives (cost, safety, performance). Digital twins could 

serve to further improve thorium reactor designs and to identify potential operational challenges and 

faults. 

ii. Traveling Wave Reactors

In traveling wave reactors, a small quantity of enriched uranium or plutonium triggers a chain 

reaction, which showers a larger volume of natural and depleted uranium (which are abundant) with 

neutrons. These neutrons convert the uranium to plutonium, which is a reactor fuel.28,30 Designs vary 

between static fuel systems, in which the reaction wave moves through stationary fuel arrays, and 

standing wave designs, in which the reaction front is maintained in place by moving the fuel.  

Given the early status of design and operation, an enormous number of potential AI applications 

could serve to test and improve traveling wave reactors. First, AI could help determine how to blend 
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and configure the fissile trigger. It could help assess the potential for adding wastes from nuclear 

weapons or medical isotopes. As with thorium reactors, it could help design better, cheaper, safer 

reactors. And it could help anticipate novel challenges and risks from extended operation of traveling 

wave reactors, including potential environmental and commercial challenges. 

iii. Sodium-cooled fast reactor

Sodium-cooled fast reactors (SFRs) are advanced nuclear reactors that use liquid sodium as a 

coolant, allowing for higher operating temperatures and lower pressures compared to water-cooled 

reactors. SFR technology has been demonstrated in several countries, but deployment remains 

limited, with only a handful of SFRs reactors currently operating. Their “fast” neutrons have more 

energy, so they can split more kinds of atoms as fuel.31 

Terrapower, a US company developing an SFR design, is using AI to optimize the placement and 

enrichment level of fuel elements.32 AI may also be used to find weak spots in the design before 

construction by running multiple operating scenarios in a quick fashion.  

iv. Graphite Gas-Cooled Reactors

Nuclear engineers from the University of Tennessee, Oak Ridge National Laboratory and UltraSafe 

Nuclear Corporation have optimized the design for a graphite-moderated, gas-cooled reactor with a 

core manufactured via 3-D printing. Use of 3-D printing has liberated designers from uniformly 

shaped components. The technique, also called additive manufacturing, allows fabrication of cooling 

channels of varying radius—even variable radius over its length—and the channel’s path through the 

graphite does not have to be straight. Their design is for a 3-megawatt core, measuring 1 meter high 

and 80 centimeters in diameter. Its size gave rise to the informal name, “the trash can reactor.” At 

the moment, this design is conceptual under DOE’s Transformational Challenge Reactor program.  

In developing their “trash can reactor,” researchers at the University of Tennessee used AI to help 

optimize their design. “A human can do it, but it’s difficult for the human to do it precisely,” said 

Vladimir Sobes, assistant professor of nuclear engineering at the University of Tennessee, Knoxville 

and lead author of a paper describing the process. “The human gets the intuition very well in terms 

of directionality, but not in terms of precise numbers.” In their case, the AI program applied 

computational fluid dynamics techniques to 750 designs to find the best configuration.33 

v. Networking fleets of new reactors

Part of making nuclear power cost-competitive is getting economies of scale in reactor operations—

not just construction—and making best use of human resources across a fleet. Today, nuclear power 

plants differ enough from each other that each needs its own engineering and maintenance.  

Maintenance is conducted mostly based on the condition of components, as observed by local staff. 

But a family of new reactors could pool their data, and some engineering and maintenance functions 

could be centralized. Utilities that operate fleets of reactors have already centralized their 

engineering and maintenance to improve efficiency, but AI may allow additional centralization.  

X-energy, for example, is developing a gas-cooled, graphite-moderated small reactor, which it

intends to deploy in four-packs. However, all the four-packs will be wired together, and AI at a
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regional plant support center will analyze their pooled data.34 This arrangement should permit 

predictive maintenance based on data gathered from components, including temperature, vibration 

and similar parameters, which will indicate whether to increase or decrease the maintenance 

interval. This approach contrasts with the legacy approach of refurbishing solely based on time 

intervals or equipment cycles. 

The system can also optimize the supply chain, determining what parts need to be kept in inventory 

and how fast they will be consumed. Humans will still be in the loop, according to the company, and 

it does not plan to use AI in the moment-to-moment operation of the plants.a 

FUSION 
Can AI help make fusion energy practical? The date predicted for that milestone is has always been 
floating a few years in the future, and the pathway is still unclear. There is, however, some early work in 
applying AI to this challenge.  

Researchers at the Princeton Plasma Physics Laboratory have used AI to attack a central problem of 
magnetic fusion, which is to keep the plasma field together, a prerequisite for maintaining the terrific 
temperatures and pressures needed to fuse atoms. AI has analyzed previous experimental work in 
making plasma fields in a tokamak and can now predict one type of instability that causes plasma fields 
to break down, called tearing mode instabilities. AI can give notice of 300 milliseconds, which is short 
(about three times the duration of a blink of an eye), but potentially long enough for a computer-
controlled system to make adjustments to prevent the tearing. Researchers have used AI to change the 
shape of the plasma and the strength of the beams that add power to it. Thus far, they have applied AI 
to one type of instability at one tokamak, which uses a magnetic field to keep the plasma together, so 
the work is still preliminary.36 

AI has also been used to help with another approach to fusion—inertial confinement. Engineers at 
Lawrence Livermore National Laboratory used AI to study hundreds of thousands of computer 
simulations to improve the way the fuel is confined.37 Lawrence Livermore sustained a fusion reaction in 
December 2022 that produced more energy than was used to create the event.  

C. Nuclear waste

One of the most vexing and persistent concerns about nuclear energy is the back end of the fuel 

cycle: waste management. Although nuclear waste is safely managed today through a variety of 

approaches, public concerns persist regarding safe handling and disposal of waste fuel and nuclear 

residues. Advances in AI can potentially improve the end of the nuclear fuel cycle 

a NRC Chairman, Christopher T. Hanson, reiterated in testimony before a House Energy & Commerce 
subcommittee on July 23 that his agency’s position is that humans must remain in the loop.35 
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i. Dry Cask Storage

Most operating plants around the world have on-site interim storage of spent fuel rods in specially 

designed and operated pools. When pools become full, the rods are most commonly placed into dry 

casks, comprising a metal sheath and concrete. The dry casks are designed to hold fuel rods 

indefinitely, with most common dry-cask performance estimates of ~100 years of storage, with some 

estimates of 1800 years.38 Dry casks are commonly stored above ground and can be shipped safely.  

AI has the potential to improve the design and performance of dry cask storage. In part, this is due to 

the long history and sustained study and monitoring of the casks, which produced data that might 

serve as AI training data sets. For example, AI has helped better identify damage and functional 

anomalies,39 and is a central component of systems for automatic damage detection.40 AI tools could 

also optimize storage system components in terms of pressure, temperature, composition and 

loadings; improve material design for storage cladding and casing alloys; and predict the 

performance of existing systems. 41,42 

Figure 10-5. Dry casks for spent nuclear fuel. Left: Schematic diagram of a cask for storage and shipping and 

description of the materials used in its construction. Right: Dry-cask storage containers in the field. Source: US NRC43 

ii. “Conventional” Geological Repositories

The scientific consensus is that the long-term solution for containing and disposing of spent nuclear 

fuel is dedicated geological repositories. According to the Nuclear Energy Association (NEA), “Deep 

geological disposal is widely agreed to be the best solution for final disposal of the most radioactive 

waste produced”.44 Today, some long-lived waste from weapons production and maintenance is 

buried at the Waste Isolation Pilot Plant (WIPP) facility in New Mexico,45,46 which has operated since 

1999 and has received over 14,000 shipments of trans-uranic waste. The Onkalo facility in Finland,47 

the first facility dedicated to civilian high-level nuclear waste storage, could open as early as 2026 

with the goal of 100,000-year containment. 

https://csgmidwest.org/wp-content/uploads/2022/08/Easton.pdf
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These facilities are highly complicated in design, site characterization, operation, fault detection, 

monitoring (sensors and controls) and performance assurance. AI applications across these 

disciplines could deliver improvements in materials, design and operational performance.48 Potential 

improvements could include understanding mineralogical response,49 better corrosion resistance 

and management (see below), improved fault detection, heat management, optimized loading of 

storage cannisters50 and rapid assessment of environmental hazards. AI could also help find the most 

promising locations for geological repositories.51 To better understand these potential opportunities, 

the NEA convened a working group in 2023 to explore applications to radioactive waste storage,52 

with its report and recommendations anticipated in 2025. 

iii. Alternative Waste Management Strategies

Finally, AI might help operators, managers and regulators consider novel approaches to nuclear 

waste storage. One promising approach, deep borehole disposal (DBD), would place waste 

containers into specially designed boreholes that are 5 km deep or more. AI has many potential 

applications in this approach, including identifying promising borehole sites, optimizing container 

design, or far-field detecting of disposal breaches. 

Another potential approach involves separating certain radioactive isotopes in nuclear waste and 

transmuting them into new elements that do not need to be isolated for so long (e.g., by bombarding 

long-lived isotopes with neutrons to convert them to materials with shorter half-lives).53 Possible 

benefits of processing and partitioning wastes followed by transmutation include recovering some 

elements for re-use in fuels and reducing total waste volumes.54,55 Although promising, 

transmutation is an immature technology that needs advanced technology.56,57  In considering 

functional transmutation systems, some workers have already turned to AI and ML applications to 

provide insight.58 Potential applications include optimizing energy and performance for isotope 

separation and designing neutron beams and specialty materials for transmutation system 

components. 

D. Nuclear regulatory process

Regulators enforce the obligation of plant operators to ensure that power reactors remain safe. As 

technology advances, the integration of AI into regulatory activities represents a promising avenue 

for enhancing oversight and efficiency of enforcement. AI algorithms could be deployed to analyze 

maintenance and performance data from nuclear power reactors, enabling more predictive decision-

making. For instance, AI-powered analytics could identify emerging safety trends or anomalies in 

reactor performance, allowing regulators to prompt the licensees to take preemptive measures to 

address issues before they escalate. Additionally, AI-driven automation could streamline regulatory 

processes, such as inspections and licensing reviews, by focusing regulators on the most important 

areas, optimizing resource allocation and accelerating assessment of compliance with safety 

standards. 

However, integrating AI into regulatory activities also presents challenges. Ensuring reliability and 

transparency of AI algorithms used in regulatory decision-making will be paramount to maintaining 

public trust and confidence in the regulatory process. Rigorous testing, validation and monitoring of 
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AI systems will be necessary to mitigate the risk of biases, errors or unintended consequences. 

Furthermore, regulatory bodies will need to develop robust frameworks and standards for ethical 

and responsible use of AI, particularly concerning data privacy, security and accountability. 

Collaborative efforts with industry stakeholders, research institutions and AI experts will be essential 

for navigating these challenges and harnessing the full potential of AI to enhance nuclear safety and 

regulatory oversight. 

A few regulatory bodies have already started exploring and testing AI systems through hosting 

workshops, engaging industry stakeholders, seeking public input and using “sandboxing” techniques. 

AI sandboxing is an activity in a controlled environment where AI algorithms and new technologies 

are tested, validated and refined virtually before deploying them in the real world. The primary 

objective of AI sandboxing is to mitigate risks associated with adopting AI, such as algorithmic bias, 

safety lapses and regulatory non-compliance, while also fostering innovation and collaboration 

within the AI ecosystem.59 

AI sandboxing is not limited to nuclear power. In October 2023, President Biden issued an executive 

order on the use of AI that called for “robust, reliable, repeatable and standardized evaluations of AI 

systems.” The order requires the Secretary of Energy to establish a plan for developing AI testbeds 

and to develop tools to evaluate AI’s “capabilities to generate outputs that may represent nuclear, 

nonproliferation, biological, chemical, critical infrastructure and energy-security threats.”60 

Here are initiatives taken in several countries: 

i. United States

The NRC’s work to understand AI developments in the US nuclear industry dates to at least 2021, 

when the NRC issued a Federal Register notice to solicit comments from the industry about AI and 

organized a series of workshops on data science and AI regulatory applications. This created a forum 

for NRC, the nuclear industry and various stakeholders to discuss the state of knowledge on AI 

applications in the nuclear industry.61  

In 2022, the NRC issued NUREG/CR-7274, “Exploring Advanced Computational Tools and Techniques 

and Artificial Intelligence and Machine Learning in Operating Nuclear Power Plants,” which 

documented the state of practice of AI applications in the nuclear industry. In the same year, the 

NRC published the “Artificial Intelligence Strategic Plan” for fiscal years 2023–2027. The AI Strategic 

Plan established “the vision and goals for the NRC to cultivate an AI-proficient workforce, keep up 

pace with AI technological innovations, and ensure the safe and secure use of AI in NRC-regulated 

activities.”62 The AI Strategic Plan includes five goals62: 

1. Ensure NRC readiness for regulatory decision-making

2. Establish an organizational framework to review AI applications

3. Strengthen and expand AI partnerships

4. Cultivate an AI-proficient workforce

5. Pursue use cases to build an AI foundation across the NRC62
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There are some roles for AI that do not appear to raise safety implications. The NRC maintains the 

Agency-wide Documents Access and Management System, known as ADAMS, that is notoriously hard 

to use. In an age when other documents can be located by commercial search engines, ADAMS 

remains mostly opaque because search engines like Google work by examining links between 

documents, and ADAMS does not link documents.  

But two companies have downloaded the entire ADAMS corpus and are using AI tools to make it 

searchable. Microsoft has done this on behalf of TerraPower, which is building a reactor plus storage 

project in Wyoming. And a startup called Atomic Canyon is seeking to make ADAMS searchable so 

that companies preparing license applications can find useful precedents. Similar to other technical 

fields like medicine and law, regulating nuclear energy is a specialized field with specialized 

vocabulary. This adds a layer of challenge in making ADAMS searchable since general purpose large 

language models (LLMs) may struggle with correctly interpreting and processing technical language, 

such as that found in the 50 million documents in ADAMS. (See Chapter 11 for a discussion of LLMs.) 

A more easily searchable ADAMS would help applicants for licenses find relevant precedents—and 

solutions—for the technical issues they face.  

A 2024 workshop report from Argonne National Laboratory identified three areas where AI could 

assist nuclear power to make a larger contribution to addressing energy and environmental 

challenges: (1) accelerating the licensing and regulatory process, (2) accelerating deployment and (3) 

facilitating maintenance scheduling and autonomous operation. (AI control of robotic maintenance 

or cleanup equipment seems more likely, though, than AI replacing control room operators.) 

Regarding the analysis and licensing of new reactors, studies have looked at the potential for digital 

engineering and digital twinning technologies (a nuclear digital twin is the virtual representation of a 

nuclear power system) to be applied to reactor design and construction, which could help with the 

economics of future reactors.  

ii. United Kingdom

The United Kingdom's Office for Nuclear Regulation (ONR) is a leader in exploring the potential 

benefits and challenges of AI in nuclear power. ONR and the UK Environment Agency have consulted 

with a wide range of stakeholders on AI and are piloting an AI sandboxing initiative aimed at fostering 

innovation and exploring the potential applications of AI in nuclear regulatory processes “in the 

interest of safety, security and environmental protection.”63(See ONR, 2023 at p. 564) In November 

2022, the UK Department for Business, Energy and Industrial Strategy awarded ONR and the 

Environment Agency a grant of £170,950 through the Regulators’ Pioneer Fund to deliver the 

sandboxing pilot project (see ONR, 2023 at p. 564).  

The ONR has been exploring regulatory sandboxing for AI, consulting with the UK Environment 

Agency, the UK Civil Aviation Authority and others on topics including the use of AI-enabled robots in 

constrained spaces (see ONR, 2023 at p. 9 and 1164). Engagement sessions conducted during the 

project have sparked increasing stakeholder interest in the sandboxing approach and AI integration. 

Key findings include the necessity to clearly articulate AI benefits compared to traditional 

technologies, the importance of understanding and managing AI-related risks and of phased 
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deployment for confidence-building, and the need for a principles-based regulatory approach. 

Stakeholders also highlighted challenges in substantiating AI reliability. They stressed the importance 

of thorough hazard analysis for different AI deployment modes and identified three key areas for skill 

and guidance development: access to AI expertise, operational experience and fostering a safety-

centric culture. Moreover, stakeholders underscored the complexity of human/system interaction in 

AI deployment and advocated for disseminating guidance and good practices, focusing initially on 

principles and case studies to aid stakeholders in navigating AI deployment and regulation (see ONR, 

2023 at p. 6–764).

iii. Canada

The Canadian Nuclear Safety Commission (CNSC) has taken several steps with regards to AI. From 

2019 to 2020 the CNSC established a working group to assess the implications of disruptive, 

innovative and emerging Technologies (DIET) for its regulatory framework.65,66 In 2023, under the 

DIET initiative, CNSC along with Candu Energy, Inc. released a report titled “A Study for the Canadian 

Nuclear Safety Commission on Artificial Intelligence Applications and Implications for the Nuclear 

Industry”(See CNSC, 2023 at p. 567). The report reviews current applications of AI in the nuclear 

industry and regulatory efforts by the International Atomic Energy Agency (IAEA), US NRC and UK 

ONR. The report assesses the regulatory framework of the CNSC, providing strategic 

recommendations on how it can better support licensees in safely and effectively integrating AI 

technologies ”(see CNSC, 2023 at p. 1567) and analyzes AI applications in safety-centric industries, 

including nuclear power, oil and gas, medicine, and aviation. The report highlights data integrity as 

crucial to preventing AI failures, maintaining performance and meeting safety standards in these 

industries (see CNSC, 2023 at p. 1567). 

Three areas have emerged as regulatory challenges for CSNC with respect to AI: reliability, 

trustworthiness and security. The 2023 report provides recommendations to address all three (see 

CNSC, 2023 at p. 48–4967): 

1. AI reliability in nuclear facilities. Prior to deployment, demonstrate that AI performance

meets established metrics. Implement use of AI in phases, with parallel human-in-the-loop

validation. Transition to fully autonomous operation once AI reliability is confirmed.

Implement real-time monitoring to continuously assess algorithm and data reliability.

2. AI trustworthiness in nuclear facilities. AI engineers and technicians should collaborate with

standard-setting bodies to develop uniform practices and software evaluation

methodologies. Personnel should be educated continuously to stay updated with

technological advancements and regulatory requirements, ensuring safe and effective AI

integration in nuclear activities.

3. AI security. Develop algorithms in secure environments, conduct pre-implementation

evaluations for malicious code, continuously monitor model access and usage to prevent

manipulation, and enforce strict access controls to protect sensitive information.

The report by CNSC, the UK ONR and the US NRC published in September 2024 emphasizes the 

importance of applying safety and security systems engineering principles when integrating AI into 
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nuclear applications. Since current regulations do not specifically address AI, regulators require 

nuclear licensees to identify applicable standards and potential gaps. A recommended strategy is to 

utilize the simplest technologies alongside AI to reduce uncertainty and enhance safety. This includes 

performing gap analyses to explore both AI-based and conventional risk mitigation strategies, 

especially in scenarios where AI failures could have severe consequences. The report advocates for 

robust recovery plans, risk management principles such as diversity and redundancy, and a 

multilayered defense approach to avoid reliance on any single aspect of the AI system (see Lee et al., 

2024 at p. 668). 

The report stresses that human and organizational factors play a critical role in AI deployment within 

nuclear operations. Clear definitions of human and AI roles are essential for human-machine 

collaboration, as many AI systems are designed to augment rather than replace human decision-

making. Concerns regarding the "black box" nature of AI necessitate monitoring AI performance and 

allowing for human intervention when needed (see Lee et al., 2024 at p. 9–1068). Ongoing training 

programs and evaluations of safety culture are vital for ensuring that AI integration aligns with safety 

priorities. Additionally, the report outlines high-level principles for managing the AI life-cycle, 

highlighting the importance of iterative processes in design, development and deployment, while 

stressing the need for continuous monitoring to address issues like data drift and model biases. 

Finally, the report emphasizes the need for thorough documentation and innovative testing methods 

for demonstrating the safety and reliability of AI (see Lee et al., 2024 at p. 1568).  

iv. Japan

The Japanese Nuclear Regulation Authority (NRA) has been using AI since 2019 for automated 

transcription of meetings with industry representatives. The AI tools are used to help increase 

transparency of NRA operations.69 The NRA is also expected to use AI tools to help process data 

collected under an agreement with the IAEA regarding inspection procedures at Japanese research 

reactors and other nuclear research and development (R&D) facilities (see Siserman-Gray et al, 2023 

at p. 770). In response to a request from a member of the NRA, the NRA’s Technology Platform Group 

conducted a survey on technological trends in the nuclear power sector, which was released in 

March 2024.71 

The Japan Atomic Energy Agency and Nagoya University have developed AI tools to create radiation 

maps from data collected by drones. These tools significantly improve accuracy and reduce analysis 

time, helping map radiation in the Fukushima Daiichi Nuclear Power Plant evacuation zone.72 

The Japanese government is using AI to identify social media postings it believes to be incorrect 

regarding the release of treated wastewater from the Fukushima nuclear power plant.73 The 

Japanese government’s AI Strategy, released in 2022, highlights potential roles for AI in the power 

sector but does not specifically mention nuclear power.74 

E. Barriers

Several barriers limit the use of AI for nuclear power. In an industry that relies on a public confidence 

in both the nuclear plants and the regulators, employing a technology susceptible to “hallucinations” 
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could be counterproductive, even if experts were convinced that the technology was being used in 

safe ways. A text-based system that urges a user to divorce his wife because she does not really love 

him75 or includes glue in a pizza recipe76 could make members of the public who are already skeptical 

or opposed to nuclear power even more so. Additional barriers include:  

▪ Development of AI technology in the nuclear sector is severely inhibited by lack of data in

digital format from power reactors. The data that do exist are mostly for non-power reactors

operated by national laboratories and other institutions.

▪ Lack of domain awareness and expertise within the AI community also impedes development

of AI for nuclear power. With nuclear expertise strongly concentrated in a handful of highly

specialized institutions, it is challenging for non-experts to gain knowledge about nuclear

power, which limits scalable development of AI within this application area. Overall, interfacing

between the highly specialized nature of both AI and nuclear power requires significant

training and skills-development. Professional societies could ameliorate the problem by

providing educational opportunities and supporting development of best practices and

standards.

▪ Nuclear power has, by far, the most stringent regulatory oversight in the energy sector. The

safety and security requirements of nuclear power are a high barrier for AI applications to

overcome, deterring AI development and deployment.

▪ Current rules flatly forbid using AI in one place where advanced reactor developers say it could

be very useful: operating micro-reactors. The industry is moving toward reactors that put out

only a few megawatts, but these cannot be an economic success if they carry the full

complement of control room operators that big plants do today. In fact, they might be able to

run with no more than a local “monitor,” someone at the plant or on call, as some diesel

generators and gas turbines do. But this would require a new mindset at the NRC, which has

not given any public indication that it is moving in that direction. The current rule says only a

licensed operator can adjust the power level.77

▪ The nuclear sector has a conservative professional culture and late-adopter strategy when it

comes to new technologies such as AI, a technology subject to rapid change and

improvements

F. Risks

The use of AI for nuclear power creates a number of risks: 

▪ AI methods used as part of nuclear planning, simulation and other off-line activities that

involve close human scrutiny pose little or no additional risk over existing approaches.

Additional risk arises only if the “humans-in-the-loop” give too much or misplaced weight to

results derived from AI.

▪ The primary risk of AI in nuclear operations pertains to on-line applications. If AI-based

analyses, predictions or optimizations are used in time-constrained “real-time” decision-
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making workflows, their reliability must be taken into account to minimize the risk of 

catastrophic operational failure.  

▪ AI methods that adapt to real-time conditions require data networks that pipe data from

sensors to servers. If these networks are exposed to other networks or the internet broadly,

the application of AI can introduce a new set of cybersecurity risks. Nuclear operators and

regulators must clearly evaluate and mitigate these risks.

▪ AI methods are traditionally tested against plentiful data, which enables rigorous evaluation of

their expected performance once deployed. Data scarcity within the nuclear sector raises a risk

of insufficient validation of AI methods prior to deployment. Prematurely deployed AI methods

may lead to insights, predictions and optimizations that are less effective than traditional

approaches. In real-time applications, prematurely deployed AI carries additional operational

safety and security risks.

▪ The potential negative consequences of catastrophic operational failure at nuclear power

plants are very high. As a result, extreme caution is required by all parties, from regulators to

operators, in introducing any new technology, including AI, into nuclear power operations. For

example, the consequences of AI-induced hallucinations could be very large. In addition, AI-

operated control systems could present a new vector for cyberattacks with new vulnerabilities

to their specific design and function. Additional care is needed to harden such systems, and

additional points of intervention and override may be needed to avoid dangerous or poor

outcomes.

▪ Deploying AI within nuclear operations and maintenance may eventually eliminate certain jobs

in the nuclear sector. While this is likely a net positive in terms of minimizing human health

and safety risk within nuclear operations, it may be perceived as an economic and political risk.
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G. Recommendations

1. Nuclear regulators should be open to AI playing a role in reactor design, safety analyses and

recommendations for operating procedures. The operative question is the quality of the work

product, not the identity of the designer. All designs, analyses and procedures, whatever their

origin, should be run through rigorous reviews. Additional oversight, checks and security

hardening may be part of this work.

2. Plant owners and regulators should assure that AI will be used only in advisory and alerting

roles. Nuclear plant operators should play the same role in a plant that uses AI as in a plant

that does not. The operator should not become like a car driver who plays video games while

driving; humans must remain in the loop, engaged and active, despite the routine work

performed by AI. Nuclear plant owners should look at the experience in aviation, power and

other relevant industries.

3. The civilian nuclear industry should scrutinize AI technologies funded by government dollars

through science R&D agencies for applicability to their operations.

4. Nuclear regulatory bodies should be preparing for license requests from microreactor

companies that include a role for AI in remote control.

5. Regulators should consider employing the UK ONR’s initiative to test different AI technologies

in a controlled environment to understand AI’s potential to enhance various aspects of

nuclear operation and regulation (“sandboxing”). Through sandboxing, regulators can test,

refine and evaluate the algorithms within the context of nuclear safety.

6. Government innovation agencies should integrate AI into their research, development and

demonstration (RD&D) plans. Key foci of innovation investments should include sustaining the

existing fleet, advanced reactors, and non-electric applications of nuclear energy

7. Plant owners should engage with the scientific community to provide access to high-quality

data that can drive AI development and deployment. Professional societies should support

development and dissemination of best practices in gathering, annotating, hosting and

sharing such data.

8. Professional societies should offer educational resources and training to attract the attention

of the AI community to the nuclear sector. These societies should also reach out to computer

science academic departments, professional computer science societies and government

agencies to encourage development of AI skills within the nuclear sector.

9. Nuclear regulatory agencies should hire staff with AI expertise to efficiently evaluate and

recommend adoption of high value-add AI applications in nuclear power.
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In November 2022, the general public became aware of the power of artificial intelligence (AI) when 

OpenAI released a browser-based chat interface to its generative pre-trained transformer (GPT), a 

type of large language model (LLM). The generated text was so human-like the world experienced a 

“ChatGPT moment,” in which many felt that AI (represented by LLMs) had now reached human 

performance.  

LLMs have significant potential to help mitigate climate change. Already, LLMs are used in a variety 

of ways toward this goal. They help humans search and make sense of vast repositories of climate 

change information, from a variety of sources and in multiple languages. They identify sentiment and 

argument structure in human discussions of climate change. They find, classify and summarize 

climate change risks and impacts described within the growing breadth of climate literature.  

In the future, LLMs hold even greater potential. They can serve as tutors in climate education, depict 

personalized climate consequences, and suggest individualized climate actions. They can advance 

basic science in climate change mitigation, from materials science for developing better batteries or 

carbon capture materials to sophisticated power grid management for incorporating dynamic 

renewable energy sources. They could also serve as guides to shortcut the current maze of 

permitting requirements that are causing a backlog in bringing carbon-free energy to the grid. 

A. Background

i. Evolution of Natural Language Processing (NLP)

LLMs are an evolution of the 70-year-old field of natural language processing (NLP), in which 

computers process natural (human) languages. Table 11-1 shows common types of NLP. 

Table 11-1. Common types of natural language processing (NLP) 

NLP TYPE DESCRIPTION 

Machine Translation Automatic language translation 

Named Entity Recognition Identifying entities in text, such as people, places and organizations 

Sentiment Analysis Identifying sentiment (opinion/viewpoint) in text 

Search Finding and retrieving user-relevant information in a specific set of text 
documents 

Question Answering Providing answers to specific questions, e.g. the answer “316 ppm” to 
the question “What was atmospheric CO2 concentration in January 
1960?” (vs. searching on e.g. “historic atmospheric CO2” and receiving 
relevant documents) 

Dialogue Management Chat 

Summarization Generating summaries of longer texts 

Topic Modeling Identifying topics in documents 

Argument Mining Extracting argument structure from text 
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NLP TYPE DESCRIPTION 

Optical Character Recognition Converting images of text into digital text 

Speech Recognition Converting speech into digital text 

Speech Synthesis Converting digital text into speech 

The general methodology of NLP can be divided into three historical paradigms. 

▪ The earliest was rule-based, coding explicit instructions in the form of rules. For example, a

Spanish-English translation system would include a rule to convert “casa” to “house.”

However, these rules are difficult to write explicitly and often fail to capture nuances or

unusual cases.

▪ The next paradigm, starting in the 1980s, was statistical, jettisoning explicit rules and taking

advantage of the increasing amount of digital data. Here, the translation system would learn

patterns from the available body of human-translated documents. For example, “house” is

typically found in English translations of Spanish sentences containing “casa,” so the system

learns to choose “house” as the translation.

▪ The current paradigm, LLMs, started in the early 2010s and is also essentially statistical but

takes advantage of much more powerful statistical models based on neural nets. As described

below, LLMs handle the translation task by converting text in one language into a

mathematical representation of the words (an “embedding”) that captures their core meaning.

The LLM then converts that representation into text in another language.

ii. Understanding Language Models (LMs)

LLMs are more directly evolved from a statistical-paradigm model called a language model (LM). LMs 

originally developed in the 1980s to enable a variety of NLP tasks. They are probabilistic models of a 

natural language. That is, LMs capture the probabilities of the sequences of words (or sometimes 

sub-words or characters) in a language.  

LMs use sequences of words to derive embeddings, one of their core features. Embeddings are 

based on the idea that a word is defined “by the company it keeps.”1 For example, two common 

senses of the word “bank”—a financial 

bank and a river bank—will occur in 

different contexts of surrounding words 

(e.g., near words like “loan” or “water”). 

A word is thus embedded in its context, 

and by capturing the surrounding words 

of every word in a body of text, an LM 

stores each word’s embedding.  

Amazingly, embeddings allow the 

meaning of words to be treated like 
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mathematical equations. A well-known example is that when the mathematical value of the word 

“man” is subtracted from the value for “king,” and the value for “woman” is added, the resulting 

value is near the value for “queen.”2 Embeddings thus capture something essential about words, 

transferred out of the specific human language in which they occur. Specifically, embeddings are 

represented mathematically as vectors. The embedding vector for each word in a language is created 

by calculating which words it appears with most frequently. Further, a variety of downstream tasks 

use the de facto semantics that embeddings provide. For example, because words with similar 

embeddings are found in similar contexts, search algorithms can expand search terms with 

synonyms, by including words with vectors similar to those of the original search terms. 

iii. Growing from Language Models (LMs) to Large Language Models (LLMs) 

Large LMs (LLMs) are LMs of a much greater size than the original class of LMs. Though “large” is a 

relative term, it was first used in 2018 to describe a model called BERT (Bidirectional Encoder 

Representations from Transformers),3 which contained 340 million parameters. A parameter is 

roughly equivalent to a connection or node in a neural network. 

BERT made use of an effective new type of neural network, a transformer.4 The original transformer, 

developed in 2017 to translate from English into German, had two parts. An encoder converted 

English text into its embeddings (capturing the semantics of the source text). A decoder converted 

the embeddings into the German text.   

BERT used only the encoder part of transformers to generate high-quality embeddings. In contrast, 

LLMs, such as GPT, use only the decoder part of transformers to generate text from pretrained 

embeddings; hence the name generative pre-trained transformer (GPT). 

Since BERT, the largest LLMs have grown to over a trillion parameters (though others have been 

designed to reduce parameter size while maintaining similar performance). Modern LLMs also use 

faster parallel processing methods than earlier word-by-word sequential approaches. The immense 

scale and speed of LLMs has driven much higher performance on language-related tasks than 

previous types of models.  

There now exist dozens of LLMs, both proprietary and open source. Furthermore, though LLMs (as 

language models) started with text, embeddings need not be restricted to words. Pixels in images, 

audio clips, video frames, DNA sequences, computer code and many other types of data are best 

interpreted by models that are “aware” 

of the surrounding context. For this 

reason, LLMs can be multimodal, 

handling images, audio, video and other 

modalities, in addition to text.  

Because LLMs are typically used to 

generate text, images and other 

modalities, the technology is a type of 

Generative AI or GenAI. Another 

common term is foundation model  
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(FM), which refers to systems with a general functionality (a “foundation”) on which more specific 

applications can be built. For instance, ChatGPT is a specific chat system built on GPT, a general 

foundation. Though these three terms—LLM, GenAI and FM—describe slightly different types of 

systems, they overlap significantly and are often used interchangeably.  

Note that while LLMs are often the most effective tool for many NLP tasks, thanks to their 

foundational capabilities, this is not always the case. For example, traditional optical character 

recognition (OCR) tools currently outperform the OCR capabilities of image-enabled LLMs. 

iv. Improving and Evaluating Large Language Models (LLMs) 

An ecosystem of new technologies has arisen to improve the output of LLMs: 

▪ Prompt Engineering: LLMs generate output in response to prompts. Since the complexity of 

LLMs can yield greatly different responses to only slightly different prompts, a new discipline 

has emerged to create the most effective prompts for a given task. This can include providing 

the LLM with multiple examples (or “shots”) of the desired response type. 

▪ Retrieval-Augmented Generation (RAG): In RAG, the LLM searches a traditional database or 

trusted web source for information that it combines with its response. This can update the 

recency of information (incorporating information that has become available since the LLM 

was trained), allow companies to incorporate proprietary data, and reduce (but not eliminate) 

incorrect “hallucinations” to which LLMs are prone.  

▪ Agentic Workflows: LLMs can act as agents in a collection of multiple LLMs working with each 

other and with external tools, such as search engines, to achieve a goal. New programming 

languages have been created to develop these systems. 

▪ Fine Tuning: LLMs are typically trained as general-purpose models, which are then applied to a 

variety of specific domains. Yet they can also be fine-tuned by further training on domain-

specific data. ClimateBert5 and ClimateGPT6 are two examples in the climate domain. 

An important aspect of LLMs is evaluation of their performance, which not only records their 

astonishing progress but also drives their improvement by providing benchmarks to develop against. 

Dozens of evaluation frameworks have been created to test a variety of knowledge capabilities, such 

as question answering in a variety of subjects (e.g., logic, mathematics, commonsense reasoning and 

more). An example is Massive Multitask Language Understanding (MMLU), which contains 16,000 

multiple-choice questions from 57 academic topics.7 Figure 11-1 shows the performance of LLMs 

over four years on MMLU, revealing remarkable improvement, now reaching a human performance 

baseline of 90%. This also underscores how benchmarks are quickly being saturated and require 

replacement by more difficult ones. 
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Figure 11-1. Large language model (LLM) performance on Massive Multitask Language Understanding (MMLU) over 

time. From paperswithcode.com.8 

 

Templates called Winograd schemas are another evaluation framework used to evaluate LLMs. They 

are often used to test reasoning that is simple for humans but difficult for LLMs. In these templates, 

an answer depends on commonsense knowledge. For example, in the sentence “The trophy doesn't 

fit in the suitcase because it's too small,” does “it” refer to the trophy or the suitcase? Does the 

answer change if “small” is replaced by “large”?9 

LLMs have recently been evaluated specifically for their knowledge in the climate domain and have 

shown clear gaps in knowledge content and recency.10,11 Newer LLMs such as ClimateGPT,6 fine-

tuned on climate data, are an effort to fill these gaps. 

It is also necessary to evaluate more than knowledge capability. Equally important is assessing what 

is called alignment, meaning the extent to which LLMs are aligned with human values, such as 

helpfulness, harmlessness and honesty. This includes aspects such as ethics and morality, bias, 

toxicity, truthfulness and safety, including robustness against attacks. Benchmarks have been created 

to evaluate all these qualities.12 Assessing human-aligned values is difficult by its very nature, as 

human judgments, often the source of the content of these benchmarks, are subjective and variable. 

Thus, the ability to evaluate LLMs’ alignment with human values typically lags the ability to evaluate 

their knowledge capabilities. 

B. General Uses of LLMs 

Because of the hype surrounding LLMs, it can be difficult to determine exactly how they are currently 

being used. A 2024 Harvard Business Review13 article researched actual usage by individuals, via 

online forums, and came up with six overall themes. These are listed in the first part of the table 

below, along with example use cases for each. Following those are an additional set of attested uses 

by organizations. 
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 Table 11-2. Uses of LLMS 

INDIVIDUAL USE OF LLMS 

Technical Assistance & Troubleshooting 

• Debugging software code 

• Writing Excel formulas 

• Manipulating data 

Learning & Education 

• Generating a lesson plan 

• Giving simple explainers 

• Summarizing content 

Content Creation & Editing 

• Generating ideas 

• Drafting emails 

• Writing and editing cover letters 

Creativity & Recreation 

• Getting past writer’s block 

• Recommending movies, books, etc. 

• Writing poems 

Personal & Professional Support 

• Providing therapy/companionship 

• Providing business advice 

• Planning workouts 

Research Analysis & Decision-Making 

• Conducting specific searches 

• Performing fact-checking 

• Developing critiques & counterarguments 

ORGANIZATIONAL USE OF LLMS 

Software development assistance Creation of images and videos 

Business analytics Business analytics 

Personalized experiences 

• Marketing 

• Recommender systems 

Translation 

Search 

Data management 

Education 

• General training 

• Personalized tutoring 

Summarization  

• Search results 

• Product reviews 

• Documents 

• Meeting notes 

Generating documents 

• Business documents 

• Product descriptions 

User support (via chat, Q&A, or search) 

• Customer support 

• Helpdesk 

• Product information 

 

It is important to note that while LLMs are being used for these purposes and others, it is not yet 

clear how useful they are for these tasks. Nor is it clear whether LLMs are more useful than existing 

task-specific tools. For example, the search use case may be better served by traditional search 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 11: Large Language Models - 11-8 

  

 

engines optimized for the task. 

Interestingly, only 11% of companies 

had adopted LLMs at scale as of May 

2024, according to McKinsey.14  

It is also worth noting that in most use 

cases above, the LLM assists humans in 

carrying out tasks, rather than replacing 

them. This may be the real value of 

LLMs, in which artificial intelligence 

augments human intelligence. For 

example, LLMs can generate software 

code for common short programming 

tasks or write job application cover letters, but it cannot be relied on to guarantee the correctness of 

those products. Because the presentation of LLM output can appear so human-like, humans often 

assume LLMs’ content is human-quality. Yet LLM content can be incorrect and even harmful, and 

human over-reliance on LLM output can be dangerous (see Section E). Nonetheless, humans can 

clearly benefit from LLM assistance with common tasks, in which humans provide a quality check 

before incorporating LLM output. 

C. Using LLMs to Mitigate Climate Change 

The use of natural language processing in studying climate change is not new. Traditional NLP has 

been used to help understand views expressed in online discussions and other texts concerning 

climate change for several decades.15,16 However the advent of LLMs six years ago greatly enhanced 

the ability of NLP to help mitigate climate change. In light of their remarkable effectiveness and rapid 

evolution, LLMs have the potential to play a helpful and important role in climate change mitigation. 

In fact, LLMs are already being applied to climate change in a number of ways. Examples are shown 

in Table 11-3, categorized by NLP type. 

 

Table 11-3. Existing applications of large language models (LLMs) to climate change, categorized by 

natural language processing (NLP) type 

NLP TYPE    APPLICATION OF LLM TO CLIMATE CHANGE 

Machine Translation  • Providing climate change information in Arabic17 

• Translating windmill operational codes to textual maintenance 
instructions18 

• Translating climate model components from Fortran to Python, to 
improve performance19 

Named Entity Recognition • Identifying specific geographic locations in climate literature and tracking 
regional impacts of climate change20 
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NLP TYPE    APPLICATION OF LLM TO CLIMATE CHANGE 

Sentiment Analysis • Determining stance on climate in news media21 

• Assessing human expert confidence in climate statements22 

• Estimating public opinion about global warming23 

Search • Improving search of climate laws and policies24 

• Mining the scientific literature for functional materials design25 

• Searching product descriptions against industry estimates of similar 
products’ embodied carbon footprints26 

Question Answering • Answering questions about climate information in corporate earnings 
calls27 

Dialogue Management • Providing climate information from corporate sustainability reports 
via chat28 

• Providing organizations’ and nations’ net-zero information via chat29 

Summarization • Providing summaries of climate information from authoritative UN 
documents30,31 or tailored to the user’s specific geography32 

Topic Modeling • Detecting climate change topics in public documents33 

• Identifying environmental, social and governance (ESG) topics in news 
media34 

• Identifying climate change topics in insurance, carbon disclosure35 and 
Nationally Determined Contribution documents36 

• Finding topics in the climate literature related to climate-induced 
infrastructure hazards37 

Argument Mining • Identifying narrative techniques in climate skeptic texts38,39 

• Using evidence-based reasoning for fact-checking of climate change 
claims40,41 

 

LLMs provide another capability: classification. Indeed, the largest category of work applying LLMs to 

climate change involves classification, as listed below. 

▪ Classifying evidence in building a dataset for verification of climate claims42 

▪ Classifying climate risks in corporate disclosure reports to track trends43 and analyze their 

impact on the credit default swap market44 

▪ Classifying Task Force on Climate-related Financial Disclosure (TCFD) categories in corporate 

disclosure documents45,46 

▪ Classifying presence/absence of net-zero claims47 and climate risk type in corporate earnings 

calls48 

▪ Classifying presence/absence of net-zero claims in laws and policies49 

▪ Classifying environmental, social and governance (ESG) categories in corporate documents47 
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▪ Classifying presence/absence of climate-related text50 or environmental claims51 in a variety of 

document types 

▪ Classifying climate change impacts found in the scientific literature52 

▪ Classifying financial activities to estimate emissions of investments53 

▪ Classifying climate change claims to benchmark a corporate greenwashing dataset54 

Finally, the productivity enhancements provided by LLMs can speed up routine tasks, freeing humans 

to focus on innovation (e.g., allowing a chemistry lab to more quickly predict molecular structures 

with better carbon absorption capability).55  

The ways in which LLMs are currently used to help mitigate climate change give good insight into the 

many ways they might be used for this purpose in the future. For example: 

▪ LLMs can be especially helpful in education about climate change. LLMs can help develop 

accessible materials on climate change and act as personalized “climate tutors” to bring 

individuals up to speed on various climate topics.  

▪ LLMs can also personalize the potential impacts of climate change. Non-LLM GenAI 

technologies can already create images of a user’s home or neighborhood under flood 

conditions to personalize climate change impacts.56 Generative AI using LLMs could enable 

depictions of climate impacts in myriad other ways.  

▪ In addition, LLMs can be monetized in business to develop personalized experiences in 

advertising and marketing. In this spirit, LLMs can be tuned so their responses include 

sustainability “nudges” (e.g., suggesting lower-carbon options when asked about recipes, 

investments, travel or other general topics).57 

Other potential use cases of LLMs include: 

▪ Summarizing policy documents 

▪ Monitoring the extent of natural disaster impacts via social media 

▪ Providing laypersons a natural language interface to specialized climate information tools and 

resources 

▪ Creating synthetic data to stand in for privacy-containing data, such as residential smart 

meters to further smart grid research 

▪ Identifying chemical names in scientific literature to assist in materials discovery 

▪ Shortening the grid interconnection queue with predictive planning to help operators manage 

increasingly renewable energy sources58  

More generally, the ability of LLMs to help with common tasks, such as data manipulation and 

software development, could augment AI practitioners’ technical efforts in the above use cases. 

Finally, an important contribution of LLMs could lie in accelerating permitting for renewable energy 

(RE) siting, construction, storage and transmission—an urgent need in the United States and other 
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geographies. In the United States, federally funded RE projects require an Environmental Impact 

Statement (EIS), and the average duration from initial notice to final decision is 4.5 years.59 In 

addition, there is an “interconnection queue” of RE power and storage plants seeking connection to 

the national grid. Currently in queue is an active capacity of nearly 2.6 TW (~1.6 TW power and ~1 

TW storage), twice the installed capacity of the entire US power plant fleet (~1.3 TW), and 95% of 

that queue is zero-carbon. However, the median duration from initial request to commercial 

operation is ~5 years.60  

Part of the permitting delay is the work proposers must undertake to navigate the dozens of 

potential required permits at the local, state, tribal, interstate and federal levels.61,62 LLMs are well 

suited for summarizing and extracting information from lengthy and complex documents, which 

could accelerate permitting. For example, LLMs could assist in processing voluminous public 

comments, automate application completeness checks, and extract and organize information from 

past permits, reviews and approvals to create a reference dataset useful for all stakeholders.63,64 

LLMs also estimate solar permitting risk for developers, based on zoning information.65,66 LLMs can 

also help draft lengthy permit applications (an EIS alone averages over 600 pages67), by generating 

application text. For instance, Microsoft is using LLMs to generate documents for nuclear power 

regulatory approval.68,69 

Such work would respond to federal permitting directives. For example, the 2022 White House 

Permitting Action Plan directs federal agencies to “identify, share, or develop … tools to assist project 

sponsors, permit applicants, affected communities, Tribal communities, and other stakeholders to 

navigate the environmental review and permitting process effectively.”70 In addition, the 2022 

Inflation Reduction Act includes DOE funding for “actions that may improve the chances of, and 

shorten the time required for, approval by the siting authority of the application relating to the siting 

or permitting of the covered transmission project,”71 and DOE is piloting the use of LLMs to 

streamline RE permitting.72 

D. Barriers  

Barriers to using LLMs to mitigate climate change include the following. 

▪ Limited Interpretability: LLMs, which can contain hundreds of billions of numbers as 

parameters, are to a large extent “black boxes.” It is difficult to understand how they arrive at 

their output, eroding trust in their answers related to climate change. Though work on AI 

interpretability is making LLMs somewhat more understandable, they are still largely opaque. 

▪ Incorrect Information: LLMs are well known for “hallucinating” or making up incorrect 

information, also eroding trust and willingness to apply them to climate change. This can be 

mitigated using some of the techniques described above (e.g., RAG). But the opacity of LLMs 

makes it difficult to guarantee that information they supply is correct. 

▪ Access Barriers: LLMs require huge capital investments for training and are thus currently 

concentrated within a few technology companies. This investment requirement can shut out 

the majority of potential climate mitigation practitioners, including smaller companies, the 
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global south and academia. Fortunately, a growing number of open-source and smaller-

footprint LLMs are showing good performance. 

▪ Intellectual Property Issues: Current litigation alleges copyright infringement of certain training 

data. Although many repositories of LLM training data in the climate domain actively 

encourage their dissemination, other climate information sources belong to organizations, 

such as the media, that protect their intellectual property. Thus, copyright issues could limit 

LLMs’ current and future use of climate-related data. 

E. Risks  

Risks of using LLMs to mitigate climate change include the following. 

▪ Bias: LLMs are trained on society’s data (e.g., the Internet) and reflect society’s biases. In the 

climate domain, much of the available training data are skewed toward the global north, which 

has a greater representation on the Internet. Recent work has tried to correct bias, but it is 

difficult and over-correction can yield factually incorrect output. 

▪ Security Threats: Like any software, LLMs can be exploited. They can be subject to “jailbreaks” 

and tricked into operating outside their prescribed instructions. They are also vulnerable to 

leaking personal or proprietary information, such as residential smart meter data, which could 

be used to maliciously target household residents. It is difficult to enforce LLM guardrails, 

given their complexity and opacity. 

▪ Greenhouse Gas (GHG) Emissions: LLMs are compute-intensive. The carbon footprint of AI in 

general is currently modest, but there is potential for growth. (See Chapter 15.) Mitigation 

gains achieved by LLMs in the fight against climate change could be partially undercut by their 

own GHG emissions. 

▪ Incorrect Use: Though LLMs have captured the public’s imagination and are thus turned 

toward a variety of uses, they are often not the right tool for the job. Consequences of 

incorrect use in the climate domain can range from simply being not as effective as other tools 

to disillusionment at not living up to hyped expectations to real-world damage if improperly 

used in critical applications, such as the power sector. 

▪ Harmful Use: For every beneficial purpose of LLMs, there can be an opposite harmful purpose 

they are turned toward. For instance, in the climate domain, LLMs can be positively directed 

toward mitigation via education, marketing, content creation or software development. Yet 

LLMs could also use these capabilities for climate change denial, misinformation, or 

encouragement and development of GHG-emitting activities. 

These issues are real obstacles to furthering application of LLMs in climate change mitigation, and 

work overcoming them requires as much focus as continued development of LLM capabilities. 
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F. Recommendations 

1. Private companies and academic researchers should continue to develop LLMs specifically trained 

on climate data and ensure they are openly available so the public can both improve them and 

benefit from them. 

2. National governments, private companies, academic researchers and standards development 

organizations should cooperate on developing further benchmarks for evaluating LLMs’ 

knowledge in the climate domain, thus extending the existing ecosystem for evaluating LLMs’ 

knowledge in general. 

3. Professional societies and academic experts should develop training programs on the proper use 

and limits of LLMs in mitigating climate change to help the public better understand the benefits 

and risks of using LLMs in the climate domain. 

4. National governments, private companies and academic researchers should cooperate on 

developing public challenge competitions on proposed climate mitigation use cases of LLMs to 

advance their development. 

5. National governments and private companies should expand current research and development 

(R&D) programs in addressing known issues with LLMs, so the public can place greater trust in 

LLMs, especially when applied to climate change. 

6. LLM developers and users should publish fine-grained measurements of LLMs’ carbon footprint by 

adopting tools to track and report the GHGs emitted by their compute time. 

7. National governments should fund R&D for public-facing prototypes to advance the use of LLMs 

for accelerating permitting of renewable energy. 
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Good information on the sources of greenhouse gas (GHG) emissions is essential for responding to 

climate change. Accurate and timely data are needed to design mitigation strategies, prioritize 

abatement opportunities and track the effectiveness of climate policies. Historically, however, data 

concerning sources of GHG emissions have often been partial and approximate, with significant time 

lags. In many cases, a lack of definitive information on GHG emissions has been an important hurdle 

to climate action. 

Artificial intelligence (AI) is helping address this challenge. AI tools are now analyzing vast amounts of 

data from Earth-observation satellites, airplanes, drones, land-based monitors, the Internet of Things 

(IoT), social media and other technologies. This capability dramatically improves our ability to 

monitor GHG emissions from specific sources accurately in near real-time. 

AI’s impact on GHG emissions monitoring will likely grow in the near future as machine learning (ML) 

algorithms used to analyze and process satellite imagery at scale continue to evolve from relatively 

early-stage computer vision technologies to powerful deep learning (DL) models trained on ever-

growing amounts of data. In addition, large language models (LLMs) and generative AI may play an 

important role in building detailed and comprehensive asset databases (needed to attribute GHG 

emissions to their sources), while making it easier for end-users to use digital data.  

A. Background 

i. From GHG concentrations to emissions  

Scientists began regularly measuring GHG concentrations in the atmosphere in the 1950s. These 

measurements, from ground-mounted instruments and Earth-observation satellites, have shown a 

steady increase in GHG concentrations and been foundational for climate science (see Figures 12-1 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 12-1. The Keeling Curve, showing measurements of CO2 concentrations at the Mauna Loa Observatory in 
Hawaii since 1958, is named after the scientist Charles David Keeling who started the monitoring program.  
Source: https://keelingcurve.ucsd.edu/ 
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and 12-2). However, the data on GHG concentrations provide very limited or no information on the 

sources, location, timing and rates of GHG emissions.  

To understand sources and amounts of GHG emissions, the climate community has often relied on 

estimated emission factors based on categories of equipment and processes. Unfortunately, these 

emission factors often systematically underestimate real emissions.1-5 (This is especially true of 

anthropogenic methane emissions, which unlike CO2 emissions are not a necessary byproduct of 

fossil fuel combustion.) In addition, the use of emission factors creates no incentive for improving 

operational performance. For example, a natural gas pipeline operator will be assigned the same 

level of methane emissions—based on pipeline length and diameter—whether or not it engages in 

routine venting, flaring or other climate-adverse, high-emitting and avoidable practices.  

Different GHGs pose very different detection and measurement challenges: 

▪ CO2 emissions are mainly caused by fossil fuel combustion and deforestation. CO2 

emissions from fossil fuel combustion can be estimated with reasonable accuracy using 

fuel-consumption data, while deforestation emissions can be estimated with a lower 

level of accuracy using land-use-change data. However, neither fuel-consumption nor 

land-use-change data are readily available in all jurisdictions with sufficient frequency 

and granularity. 

▪ Methane (CH4) emissions, in contrast, come from a range of anthropogenic sources (the 

energy sector, food system and waste management) in addition to natural sources, such 

as melting of the permafrost, and are less correlated with consumption. Energy-related 

methane emissions are largely avoidable byproducts of fossil fuel production and 

transport, uncorrelated with consumption rates and unevenly distributed across fossil-

fuel supply chains. Agriculture-related methane emissions are mainly a result of livestock 

biology and rice cultivation. They have long been deemed relatively difficult to avoid, 

although emerging technologies may change that. Technologies also exist to reduce 

waste methane emissions through better landfill management practices. 
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Figure 12-2. Japan’s Greenhouse gas observing satellite "IBUKI-2" (GOSAT-2).  
Source: https://global.jaxa.jp/projects/sat/gosat2/ 

ii. AI-enabled greenhouse gas (GHG) emissions monitoring 

The use of satellites, drones and ground sensors to monitor GHG emissions at the source has 

increased significantly in recent years. These instruments produce vast amounts of data that can be 

processed and analyzed with AI algorithms to yield accurate emissions measurements.  

A growing constellation of government and private satellites now monitors GHGs. Japan launched 

the first such satellite in 2009—the Greenhouse Gases Observing Satellite "IBUKI" (GOSAT).6 Other 

government satellites include the European Space Agency’s (ESA’s) Copernicus Sentinel program; 

NASA’s Landsat, OCO-2 and-3, EMIT and GOES missions; the German Space Agency’s (DLR) 

Environmental Mapping and Analysis Program (EnMAP)7; the Italian Space Agency’s (ASI) PRISMA8; 

China’s Gaofen, Ziyuan and Huanjing missions9; and many others.  

On the private-sector front, GHG-tracking satellites include, inter alia, the GHGSat constellation and 

Maxar’s WorldView program. Several private start-ups, such as the French company Absolut Sensing, 

are planning to launch new Earth-observation nanosatellites. Oil and gas companies, including Exxon 

Mobil10,11 and Saudi Aramco,12 have announced plans to operate their own GHG monitoring 

satellites. 

Non-governmental organizations (NGOs) have recently been adding to this ecosystem of Earth-

observation satellites. The Environmental Defense Fund (EDF), a US NGO, launched MethaneSat in 

March 2024. Carbon Mapper, a public-private coalition composed of Planet, NASA’s Jet Propulsion 

Laboratory (JPL), the State of California, the University of Arizona, Arizona State University, the Rocky 

Mountain Institute, the High Tide Foundation and other sponsors launched Tanager-1 in August 

2024,13 the first of several dedicated GHG-tracking satellites. 

AI technologies are essential for processing the vast amount of imagery these satellites generate, 

analyzing it at scale and speedily converting it into precise, accurate and actionable data. Thanks in 
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part to the falling cost of data storage and the dramatic increase in compute power achieved in 

recent years, scientists have developed powerful algorithms to process and analyze terabytes of raw 

satellite imagery and other data at scale in near-real time. This “software” development is a critical 

enabler of advances on the “hardware” side. 

Further progress in AI, together with new satellites, will continue to improve methane emissions 

monitoring and will open up new abatement opportunities. Progress in real-time CO2-emissions 

monitoring, as well as in measurement and monitoring of natural carbon sinks—such as vegetation—

offers the same potential. 

B. Methane Emissions  

Methane has more than 80 times the warming power of CO2 in the first 20 years after release and is 

as big a source of near-term warming as CO2.14 Although methane emissions account for an 

estimated 30% of global warming to date, the lack of good information on sources of methane 

emissions has limited the ability of policymakers and emitters to address this problem.  

In recent years, the convergence of AI and satellite imagery has significantly improved methane-

emissions monitoring. ML algorithms now make it possible to analyze raw satellite imagery at scale in 

record time. This is accomplished in three main stages. First, AI tools help identify abnormal 

concentrations of methane. Next, AI tools convert these static measurements into dynamic 

emissions events. Finally, detailed databases of infrastructure and industrial assets and advanced 

emissions dispersion models are used to connect (“attribute”) these emission events to their point 

sources. These tools provide policymakers and emitters with important new information for methane 

abatement by attributing observations of excess methane in the atmosphere to the specific sources 

that are responsible. 

i. Processing data at scale 

AI algorithms that process large amounts of remote-sensing data related to methane have been 

developed by scientists at research institutions, such as the Netherlands Institute for Space Research 

(SRON), the French Laboratory for Climate and Environmental Science (LSCE) and the Wofsy group at 

Harvard University (to name just a few), often working in partnership with private actors, such as 

French environmental intelligence firm Kayrros SAS or Canadian company GHGSat. (One co-author of 

this chapter is a principal of Kayrros.) Kayrros has been particularly active in further developing and 

operationalizing research advances, which has enabled automatic detection and measurement of 

large methane emissions events at scale on a global basis (Figure 12-3). The International Methane 

Emissions Observatory (IMEO), established in 2021 by the United Nations Environment Programme 

(UNEP) and the European Union, has been using methane detection data from Kayrros, SRON and 

GHGSat as feeds for its Methane Alert and Response System (MARS), which collects and disseminates 

information on super-emitters and works with the responsible parties and their governments to 

reduce emissions. More recently, the IMEO has been developing its own capability to process and 

analyze satellite imagery in-house.15  

Advances in AI-enabled image-processing capacity help squeeze ever more methane information 

from satellite imagery, including from sensors that may not have been originally designed for that 
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purpose. Thanks to this progress, satellites can now detect methane at the same spatial resolution 

and emission threshold as aerial surveys (down to 3 meters and 100 tons per hour or less), at a much 

lower cost and higher temporal resolution (frequency).16 The combination of new satellites and 

increased processing capacity results in a growing number of GHG emission detections and facilitates 

their attribution to point sources on the ground. There is a trade-off among spatial resolution, 

temporal resolution (frequency) and spectral resolution (sensitivity) in most satellites—optimizing for 

two of these variables usually comes at the expense of the third. However, integrating inputs from 

multiple sensors (often called “data fusion”) can overcome these limitations by creating an ideal, 

multi-scale monitoring platform that combines the best of all instruments.   

 

 

Figure 12-3. Methane super-emitters identified from satellite data processed with AI algorithms. Source: Kayrros. 

ii. Use cases and takeaways 

AI-enabled methane monitoring can be used in two ways: to identify large but sporadic emissions 

events, known as “super-emitters,” or to assess total overall methane emissions from a country, sub-

national region or fossil-fuel basin over a more prolonged period of time.   

The transparency provided by AI and satellites has already significantly changed our understanding of 

anthropogenic methane emissions. For example, large emissions events from fossil fuel extraction 

and transportation have been shown to be far more ubiquitous than previously thought. Eliminating 

these super-emitters is “low-hanging fruit” for climate action: their eradication could be achieved at 

a relatively low cost,17-19 significantly reducing anthropogenic methane emissions and cutting the 

increase in global average temperatures by 0.3 °C by 2045 and by 0.5 °C by 2100.20,21 This set of 

abatement measures—the fastest known way to reduce global warming—is entirely dependent on 

the use of AI.  
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AI-enabled monitoring also has revealed large-scale, chronic methane emissions from landfills, with a 

disproportionate share in South Asia (India, Bangladesh and Pakistan)—another promising 

abatement opportunity.22 In these countries, methane abatement could also provide substantial 

health benefits and reduce the need for imported, high cost liquefied natural gas (LNG). Similarly, AI-

enabled monitoring using airborne detectors has uncovered large, ongoing methane emissions from 

US landfills.23 In addition, AI can be used to analyze satellite imagery to track methane emissions 

from cattle feedlots.24  

Basin-level or regional methane emission assessments can also help establish national or subnational 

methane inventories, set abatement targets and monitor the effect of mitigation policies. Saudi 

Arabia’s King Abdullah Petroleum Research and Studies Center (KAPSARC), a government think-tank, 

conducted an AI-enabled study of Saudi methane emissions from oil and gas production and landfills. 

Their findings have confirmed the accuracy of earlier government assessments compared to those of 

the International Energy Agency (IEA) and the European Commission’s Emissions Database for Global 

Atmospheric Research (EDGAR).25 

C. Carbon Dioxide (CO2) Emissions 

AI is increasingly used to better understand and quantify sources of CO2 emissions. At present, CO2 

emissions are monitored by assessing levels of carbon-emitting activities, such as industrial 

production and deforestation. AI helps build on existing datasets and dramatically improves the 

timeliness, granularity, comprehensiveness and accessibility of CO2 emissions information. 

i. Methodology: Bringing granular, real-time accountability to carbon emissions 

AI can analyze and integrate large quantities of data from highly diverse real-time or near-real-time 

datasets from industry, power generation, ground transportation and other sectors. This approach 

has produced near-real-time trackers of CO2 emissions by sector, company or even individual asset, 

with continuous improvements made to the underlying datasets and AI-based emissions analysis 

methods.26,27 

ii. Current applications and emerging opportunities 

AI-enabled CO2 emissions data allow policymakers, industries and other carbon-market participants 

to monitor demand for carbon allowances in near real-time, better understand the drivers of carbon 

emissions and assess the effectiveness of emissions-abatement policies with timeliness and 

precision. For example, AI can model and monitor CO2 emissions from urban environments with high 

spatial and temporal resolution, helping city managers and urban planners assess the effects of 

abatement measures, sharpen their toolkit and respond to changing circumstances in a timely 

manner.28-30 

More use-cases for AI-enabled CO2 emissions data will undoubtedly emerge as AI algorithms 

continue to improve, helped in part by new underlying data from Earth-observation satellites 

scheduled to be launched soon. 
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iii. Use case: Providing near-real-time information on CO2 emissions from transport 

and industry 

Climate Trace, Carbon Monitor and other organizations are using AI to more accurately monitor CO2 

emissions. Their methods include combining computer vision with data from remote-sensing 

satellites, such as detecting water vapor (a proxy for CO2 emissions) released from large natural-draft 

cooling towers at power plants31,32; measuring daily vehicle traffic on roads over large regions and 

GHG emissions these vehicles collectively produce33; and improving plume-inversion techniques to 

translate direct CO2 concentration measurements into estimates of CO2 emissions rates at large 

power plants.34 

Related work has used AI to create a much more accurate estimate of GHG emissions per nautical 

mile from cargo ships and has combined this information with satellite-relayed ship tracking data 

from automated identification system (AIS) transponders.35  

Such transparency carries far-reaching consequences for carbon abatement. In particular, AI-enabled 

measurements can support and improve carbon markets, such as the EU Emissions Trading System 

or the California Cap-and-Trade Program, amplifying their impact by providing carbon-market 

participants with up-to-date information on implied demand for carbon credits.  

In operational contexts, AI tools are increasingly able to make real-time predictions of the CO2 

emissions that will result from different vehicle duty cycles,36 industrial process changes37 and 

industrial boiler use.38 This can help optimize operations to reduce on-site emissions and can 

highlight specific operating conditions that lead to excessive emissions. 

AI-enabled measurement of carbon emissions could also help assess lifecycle emissions of 

commodities and other products. This type of information may be critically important for carbon 

border adjustment mechanisms. For example, AI-enabled measurements could be used to assess the 

amount of carbon (and methane) emissions embedded in products (e.g., crude oil, gasoline, LNG, 

electric vehicles (EVs) or wind turbines) by collecting data on emissions associated with each link of 

their respective supply chains. Countries importing the product could use this information to assess 

its GHG intensity and any associated GHG tariff. 

Finally, AI tools can provide policymakers with a powerful resource for tracking effects of emissions 

regulations, identifying and prioritizing CO2 abatement opportunities, detecting swings in CO2 

emissions and crafting appropriate reaction measures in a timely manner. This is particularly the case 

for urban CO2 emissions, which are estimated to account for up to 60% of total CO2 emissions and 

which can be analyzed with AI technologies in great detail.39 

iv. Use case: Achieving near-real-time transparency on negative CO2 emissions and 

carbon credit demand 

In its Sixth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) highlights the 

importance of vegetation to achieving our climate goals. Forestry and other forms of vegetation 

constitute a vital carbon sink. Monitoring this carbon sink has been challenging with traditional 

techniques. However, AI algorithms can be trained to survey the world’s vegetation at high spatial 
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resolution with radar and optical satellite imagery and can precisely measure the amount of biomass 

carbon sequestered in forestry and other forms of vegetation, at scale and at reasonable cost.  

Traditional monitoring of forest projects involves sending teams of inspectors on the ground at large 

intervals of 5 to 10 years to inspect sample sections of the forests, measure the circumference of 

their tree trunks, and extrapolate from those measurements. Inspections are (1) too few and far 

between to detect deforestation or degradation in time to take corrective measures, (2) do not 

account for carbon leakage (whereby deforestation is pushed from carbon-offset projects to 

surrounding areas) and (3) do not provide sufficient data to assess the baselines used to set the 

number of carbon credits issued (i.e., the assumed growth trajectory of the forest parcel in the 

absence of a carbon offset project).  

In contrast, AI can be used to process radar and optical satellite imagery to survey forests and build a 

strong monitoring, reporting and verification (MRV) architecture around carbon-offset projects. AI 

technologies make it possible to monitor entire projects comprehensively, cost-efficiently and non-

intrusively at relatively high frequency. They are also able to detect carbon leakage virtually from the 

onset and to test the projects’ baselines by using archival imagery to observe underlying trends in 

their respective areas over extended periods of time.40 This transparency has the potential to rebuild 

confidence in carbon-offset projects, prevent and crack down on unsavory practices in nature-based 

solutions (NBS) markets, set strong safeguards around our shared forestry endowment and safely 

channel capital from North to South.  

Many start-up companies are currently engaged in AI-assisted biomass carbon monitoring, 

competing commercially in this emerging sector. As with monitoring positive carbon emissions, this 

application of AI technology has several use cases. These include strengthening forest protection 

through robust MRV of carbon offsetting projects, supporting carbon markets with provision of near 

real-time data on the supply of carbon credits and facilitating implementation of anti-deforestation 

policies.  

These AI-assisted technologies are a 

potential game changer for developing 

a robust and transparent NBS sector. 

NBS projects have been plagued by a 

lack of transparency that has shielded 

dubious and sometimes fraudulent 

business practices, caused market 

inefficiencies and failures, and severely 

undermined market confidence in NBS 

as a viable climate tool.41,42 AI 

technologies can provide carbon traders with near-real-time information about the supply of carbon 

offsets, supplementing implied demand data produced from monitoring carbon emissions. Near-real-

time transparency on carbon-credit supply and demand fundamentals can facilitate price formation 

in carbon markets and can help send price signals needed to support investment in offset projects.43 
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D. Policy and Market Impacts  

Policymakers and private-sector companies around the world are already beginning to avail 

themselves of AI-enabled emissions-tracking tools. This is especially true of EU and US methane 

policies.   

i. Methane 

By shining a light on methane emissions, AI has sparked a revolution in global governance of these 

emissions. The full impact of such changes have yet to be felt, but they have the potential to start 

reducing global methane emissions relatively soon.  

In the United States, these policies include both new methane regulations of the US Environmental 

Protection Agency (EPA) and the methane provisions of the Inflation Reduction Act of 2022. Both 

sets of rules recognize AI-enabled satellite technologies as a way to independently track the methane 

footprint of oil and gas operators without having to rely on their self-reporting. To that end, and in a 

departure from past practice, the US EPA has invited third-party notifiers to provide methane 

detection data that may be used as a basis for enforcement actions and other measures. These third-

party agents, which will be subject to formal EPA certification, may include users of AI-enabled 

satellite monitoring technologies.  

The US Government has also tasked NASA with supervising the launch of the US GHG Center, a multi-

agency unit of NASA, the US EPA, the National Institute of Standards and Technology (NIST) and the 

National Oceanic and Atmospheric Administration (NOAA).44 The US GHG Center is expected to 

provide a wealth of information on GHG emissions, including AI-enabled methane measurements.  

Similarly, the EU Methane Strategy is imposing both new methane reporting standards for European 

energy producers and new due-diligence requirements for European importers of fossil energy. It has 

considered a “border adjustment mechanism” that would place a tariff on methane emissions 

associated with EU imports from countries that do not already penalize methane emissions. 

Companies may use AI-enabled satellite monitoring technologies for compliance purposes, and EU 

member countries may use them for enforcement.  

Meanwhile, as noted above, the IMEO has been developing the MARS platform, which uses AI and 

satellite imagery to track global methane emissions.  

In parallel with these developments, AI-enabled satellite monitoring of methane emissions has been 

instrumental in the birth of multilateral coalitions and initiatives to reduce methane emissions from 

the oil and gas sector, such as the Global Methane Pledge, launched at COP26 in Glasgow in 2022 

and joined by more than 155 participants.45 AI-enabled detections of large methane emissions in 

Turkmenistan played a role in getting Ashgabat to agree to work with the United States and other 

countries to reduce its methane footprint. 

AI-enabled satellite monitoring can empower countries to report their methane emissions to the 

United Nations Framework Convention on Climate Change (UNFCCC) more accurately than is 

possible with the prevailing method of emission factors. However, while this use of AI technology for 

GHG inventories or “stocktake” purposes is not expressly disallowed by the United Nations, it is not 

explicitly encouraged. This is unfortunate, since satellite studies often show large discrepancies 
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between “bottom up” inventories based on emission factors and “top down” measurements with AI 

and satellites. On rare occasions, AI monitoring has made it possible to validate the accuracy of 

national inventories and disprove higher third-party estimates (see, e.g., KAPSARC 2023 study).26 

Once methane abatement policies have been adopted by countries and/or corporations, AI 

technologies can help verify their implementation, assess their effectiveness and evaluate what 

works best or what does not work. For example, the Permian basin (the United States’ most prolific 

oil and gas basin) straddles the line between Texas and New Mexico, two states with very different 

methane regulations. Here, AI monitoring could help empirically measure the impact of these 

policies on the basin’s GHG footprint.46  

In commodities markets, methane emissions (or the lack thereof) are becoming an important 

differentiating factor, with products deemed “clean” or “low emissions” already commanding or set 

to command a premium. AI-enabled technologies hold promise as a key tool for helping establish the 

methane footprint of individual oil and gas producers or cargoes of oil or LNG and could become an 

important building block in “responsible gas“ certification.47 

In equities and fixed-income markets, several banks and asset managers have announced AI-assisted 

initiatives to factor methane measurements and other climate-related metrics into their decision-

making for investments or loans. Here too AI-assisted technologies could prove pivotal in helping 

financial actors integrate climate considerations into their workflows.  

ii. Carbon dioxide (CO2) 

Policymakers are increasingly considering the need to adjust international trade practices to avoid 

“carbon leakage” (i.e. “imported emissions” from exporting countries with loose carbon regulations 

to importing economies with more stringent rules). At the national level, this can mean a “carbon 

border adjustment mechanism” (CBAM) – a carbon tariff on imported goods from countries with 

lower carbon emissions standards than the destination market.  

An EU CBAM is due to take effect in its definitive regime in 2026. In the United States, there is 

bipartisan support for a proposed US version of the European CBAM. (In California, a CBAM is already 

effectively in place regarding the inter-state movement of electricity from neighboring states under 

the California Air Resources Board’s Cap-and-Trade Program.)  

One of the challenges raised by proposed CBAM regulations is to accurately assess the carbon 

footprint of internationally traded commodities and goods—a challenge that AI-enabled technologies 

might help to overcome. Not surprisingly, there is strong interest in both the European Union and 

the United States in studying the usefulness of these technologies for determining the carbon 

intensity of imports. 
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E. Barriers 

The use of AI to harness satellite imagery and other data sources is one of the most promising 

developments for GHG emissions monitoring. However, there are important barriers.  

i. Lack of AI literacy 

Lack of AI literacy limits the ability of data users to 

analyze GHG data, integrate these data into their 

operations and generate customized products and 

applications based on these data. Lack of AI literacy 

could also inhibit the willingness of national 

governments to avail themselves of AI-enabled Earth-

observation tools in the absence of guidelines from the 

UNFCCC, even if these technologies could greatly 

enhance the accuracy of their GHG inventories and 

support their stocktake efforts. Finally, lack of AI literacy 

could also adversely affect public trust in AI-enabled 

GHG data and create a fertile ground for misuse of data. 

To realize the full potential benefits of AI for GHG 

emissions monitoring, AI literacy must be broadly 

improved, including in developing economies. 

The growth of generative AI and large language models (LLMs) could help overcome this barrier by 

making it easier for users to leverage AI-enabled data. This could however prove to be a double-

edged sword. Distrust of generative AI and the tendency of some LLMs to “hallucinate” could 

undermine user confidence and emerge as barriers to adoption in their own right. 

ii. Sovereignty concerns 

Sovereignty concerns may emerge as a significant impediment to using AI-enabled GHG emissions 

data. Some countries may object to foreign monitoring and analysis of emissions within their 

territories. AI-enabled analysis of GHG emissions data may face a trust deficit if it is perceived as 

biased in favor of certain economic actors, especially if these data are used as the basis for imposing 

international tariffs or trade restrictions.  

Independent verification of global GHG data and international consensus about the accuracy of AI-

enabled analyses will be required to fully realize the potential benefits of AI tools in GHG emission 

monitoring.48 

iii. Emitter pushback 

Industry participants whose true climate footprint might be exposed by AI technologies as larger 

than reported or whose short-term interests might otherwise be harmed by the transparency 

brought by AI technologies might be naturally inclined to push back against these measurements. 

National governments whose GHG inventories might be shown as understating actual emissions 

might be inclined to react by challenging the maturity and reliability of AI-enabled monitoring 

technologies. 
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iv. Uncertain financial models  

A tension exists in current development of AI-enabled GHG monitoring tools. While these tools rely 

strongly on data provided by publicly funded satellites, much of their technological innovation is the 

result of intense competition between private-sector companies, including many start-ups. These 

companies are profit-seeking and must generate revenue from the sale of data to recoup their 

investments and fund further research and development (R&D). At the same time, the data must be 

shared as widely as possible and ideally made publicly available in open access to maximize their 

impact and facilitate global acceptance of their accuracy. Protecting the intellectual property in many 

AI-enabled technologies is essential to the financial success of these private-sector enterprises and 

thus to innovation in AI technologies but may limit public acceptance of GHG emissions data.  

F. Risks 

Risks with respect to using AI for GHG emissions monitoring are modest. Safety and bias concerns 

that arise with using AI in other sectors are not major issues when using AI for monitoring GHGs. 

However, two categories of risks require 

attention. 

Privacy concerns may arise when AI enables 

remote monitoring. For example, 

manufacturers may be concerned that AI-

enabled remote GHG emissions 

measurements could provide confidential 

information about factory operations to 

competitors. However, the technologies 

underlying AI-enabled emissions data (high-

resolution remote sensing and advanced AI 

algorithms) can be used to obtain competitive 

industrial information regardless of whether 

they are also used to assess emissions. 

Mitigation of this concern ultimately relies on 

policies that address those underlying 

technologies. 

Lack of confidence arising from data inconsistency. Lack of confidence in AI-enabled data could 

emerge among key stakeholders due to a variety of factors, such as naturally occurring differences in 

GHG emissions detections and measurements, inaccurate measurements or seemingly conflicting 

results. Natural differences in data could be misconstrued as conflicting when they in fact simply 

stem from the intermittency of some emissions and timing differences in collecting satellite imagery. 

Inaccurate or conflicting results could result from the proliferation of imagery transmitted by a 

growing constellation of Earth-observation satellites, as well as from new start-up companies 

competing in the AI-for-climate space, with different providers releasing different measurements.   
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G. Recommendations 

Several measures could help address the barriers and overcome the risks described above, promoting 

the use of AI tools for GHG emissions monitoring.  

1. National governments should encourage the UNFCCC to update guidance on preparing national 

emissions inventories to explicitly allow the use of AI-enabled data rather than primarily emissions 

factor–based assessments. This would provide for more accurate baselines and thus make it 

easier to optimize climate policies and to better tailor them to specific national conditions, while 

also better recognizing the progress of countries in reducing their climate footprint. 

2. Carbon accounting bodies, such as the GHG Protocol of the World Resources Institute (WRI) and 

World Business Council for Sustainable Development (WBCSD) or the Science Based Targets 

Initiative (SBTI), should develop rules for including AI-enabled data as part of corporate carbon 

footprints, supply chain emissions estimates and related emissions-tracking efforts. When 

feasible, they should encourage or prioritize the use of validated AI-enabled emissions data over 

generic emissions factors. In tandem with this, other relevant multilateral institutions, such as the 

World Trade Organization (WTO) and IEA, should continue49 explicitly addressing the topic of 

using AI-enabled emissions data and should identify roles they can productively play in advancing 

its use in a scientifically robust manner. 

3. National governments and appropriate international bodies should consider how best to set up 

the housing and governance regime of AI-enabled emissions data, including such questions as 

whether one or several national or international organizations or private entities should function 

as de facto or de jure central data repositories or clearinghouses. Clear options should be defined 

and decisions made in the short-term. To the extent that the market or regulations require 

information on GHG emissions in supply chains, the quality of emissions data will be of 

paramount importance. To be effective, emissions data will need buy-in from as many 

stakeholders as possible and must be independently replicable. Governments and multilateral 

organizations should consider the role of existing institutions, such as the IMEO, the World 

Meteorological Organization and the Food and Agriculture Organization, as well as major 

philanthropic organizations and for-profit companies, in providing repository and clearinghouse 

services for AI-enabled GHG emissions data. 

4. National governments and appropriate international bodies should continue ongoing efforts 

toward standardizing AI-enabled emissions data and should consider whether to set up formal 

processes to certify AI-assisted emissions data and data providers. In the last two years, NIST at 

the US Department of Commerce and the UK Space Agency have spearheaded a series of 

brainstorming workshops and consultations with leading scientists and industry participants from 

around the world, with the goal of achieving greater standardization and consistency in AI-

assisted measurements of methane and other GHG emissions and of preempting the risk of future 

conflicting data.50 These efforts are highly worthwhile and ought to be continued so as to 

guarantee the scientific integrity and comparability of emissions data and to build public trust. To 
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the extent possible, participation should be broadened to include more representatives from 

emerging and newly developed economies and major exporters of commodities and 

manufactured goods. 

5. National governments, philanthropic organizations and private-sector companies should support 

ongoing “ground truthing” efforts by research universities and scientific organizations that aim to 

independently assess the performance of AI-assisted GHG monitoring technologies. Because AI-

enabled GHG monitoring technologies often detect and measure emissions that cannot be 

otherwise detected or measured, proving their accuracy can be challenging. Hence, there is a 

need to support public research to develop ways of independently replicating and corroborating 

AI-enabled data and verifying their accuracy based on well-calibrated ground-truth experiments. 

6. National governments and private-sector organizations should enhance their in-house AI 

proficiency, whether by requiring minimum AI literacy standards from a broad cross-section of 

employees or by building up dedicated AI-focused units and data-science centers within their 

organizations. Minimum AI literacy may be essential for these organizations to deploy AI-enabled 

GHG emissions data and to integrate those data into public and proprietary databases and 

operational systems. Professional standards bodies should update accreditation requirements for 

professions, such as public accounting and civil engineering, to require demonstration of minimal 

AI proficiency and the ability to use basic AI technologies. This would serve as a step to support 

adoption and implementation of emissions abatement targets by industry and carbon accounting 

by corporations. Trade and professional organizations, such as the Society of Petroleum Engineers 

(SPE) or the International Association for Energy Economics (IAEE), should support AI literacy 

among their members and the adoption of AI-enabled GHG monitoring, including through 

training programs in countries where these technologies are not widely available. 

7. Banks, asset managers and other private-sector actors should use AI-enabled methane emissions 

data to quantify the embedded emissions of fossil fuel shipments, following the lead of some 

financial institutions who have already begun this practice.  
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Materials innovation is important for decarbonization, and 
artificial intelligence (AI) can play a major role in accelerating it. 
This chapter examines how improved materials can reduce 
emissions and enable carbon management, as well as specific 
areas in which AI can help. 

The search for novel materials with useful properties has been 

central to technology innovation for centuries. Ancient Romans 

developed novel concrete for bridges, aquifers and other 

structures, some of which have survived for millennia.1 In the 

modern era, Thomas Edison’s discovery of carbon filament for 

electric light bulbs in 1879 enabled these bulbs to last for long 

enough to be practical, leading to a fundamental transformation 

of lighting technologies and the eventual phase-out of whale oil 

and kerosene lamps.2 Similarly, Charles Goodyear’s discovery of a 

process to vulcanize rubber in the 1830s helped overcome the 

limitations of natural rubber, which melts in heat and cracks in 

cold. Goodyear (among others) worked for years to address this 

challenge, eventually discovering how to cross-link the long 

molecules in natural rubber to create a much stronger and more 

durable material.3  

These examples illustrate that most materials innovation 

throughout history has relied on insight, experimentation and 

serendipity. Edison’s search for an appropriate filament 

depended on general scientific insight and exhaustive material 

testing: his laboratory tried thousands of carbonized plants 

before finally identifying one that worked well. Goodyear’s 

discovery of vulcanization was largely due to a stroke of luck. 

Many other key materials—including carbon steel, ceramics, 

catalysts and polymers—have followed similar paths. Without a 

systematic, quantitative framework for determining how a material’s properties depend on its 

chemical and structural nature, there is only one feasible approach: innovators must laboriously find 

or synthesize many different materials (or many variations of the same basic material with slight 

modifications) and exhaustively test them. This is costly and time-consuming and creates a barrier to 

technological progress. 

  

 
Roman concrete enabled extraordinary 

construction projects, including the Pantheon, 

the world’s oldest building still in active use. 

 
Thomas Edison’s discovery of carbon filament 

for electric light bulbs in 1879 fundamentally 

transformed lighting. 
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A. Materials innovation in Climate Technologies 

The performance of many clean-energy technologies is 

limited by the properties of key materials, including 

photovoltaics (PVs), semiconductors, magnets, catalysts, 

polymers, alloys and composites. Identifying new materials 

with improved properties could enable these technologies 

to achieve higher energy efficiency, lower costs, greater 

performance, longer service lifetime, higher energy 

densities and many other desirable characteristics. This in 

turn would allow these technologies to provide identical or 

improved services with lower net greenhouse gas emissions 

(GHG).  

Lithium-ion batteries are a good example of a technology 

that was greatly improved through discovery of novel 

materials. Specifically, the cathode, anode and electrolyte 

materials in modern lithium-ion batteries are all the result 

of extensive fundamental and applied research. This 

includes identification of lithium cobalt oxide (LiCoO2), 

lithium iron phosphate (LiFePO4) and other cathode 

materials beginning in the 1970s, as well as identification of 

graphite for anodes and a variety of liquid and solid 

materials for the electrolyte.4 Before these materials were 

identified and successfully integrated into full systems, the 

performance of batteries was much worse than today 

(lower energy density and total capacity). The cost of 

building battery-enabled technologies was correspondingly 

higher. Advances in these key materials therefore improved 

performance and thus brought batteries into new applications, such as electric vehicles (EVs) and 

bulk storage of renewable electricity. Research into advanced battery materials is still ongoing and 

may open a path to even higher-performing batteries, such as all-solid-state5 and sodium-ion 

technologies.6 

Advanced materials also play important roles in carbon capture and management technologies. 

Properties such as CO2-binding energy and kinetics, as well as long-term stability, determine the 

overall performance of materials used as sorbents and solvents for carbon capture and direct air 

capture (DAC) applications.7 Similar properties also determine the performance of catalyst materials 

in applications such as electrocatalytic reduction of CO2.8 Even in the case of CO2 transport for 

sequestration or utilization, material properties influence the durability and overall performance of 

bulk transport systems. 9  

 

 

 
Materials innovation enabled the development 

of lithium-ion batteries for electric vehicles 

(EVs), long-duration grid storage and other 

low-carbon technologies. 

 
Solar photovoltaic (PV) systems are the 

product of years of materials innovation and 

optimization. 
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Box 13-1  

INNOVATION IN MATERIALS SYNTHESIS 
In some cases, a well-known material with superior properties could potentially overcome limitations to 
a technology’s performance, but no practical method is known for producing this material. One such 
case is the general illumination LED bulb, now in common use. Although LEDs were originally invented 
in the 1960s, they were based on a material (gallium arsenide, GaAs) that can only emit red light. 
Researchers knew that gallium nitride (GaN) and zinc selenide (ZnSe) could enable white LEDs that 
could be used for general applications like building and street lighting. However, it was not until the 
development of the two-flow MOCVD (metal organic chemical vapor deposition) reactor in the 1990s 
that GaN crystals could be reliably produced.10  

 
This development led directly to commercial, white-colored LED lights with  
dramatically higher energy efficiency than incandescent and fluorescent  
bulbs, which are now gradually being replaced. Notably, although LEDs  
have reduced the energy intensity of lighting significantly, global CO2  
emissions from lighting have not fallen because the demand for more  
lighting has offset these efficiency gains.11  

 

 

There are many other use cases of 

advanced materials that are, or 

would be, valuable in enabling 

technologies to reduce GHG 

emissions in energy, industrial, 

transportation and other 

applications. These include solar 

PVs,12 wind turbine blades,13 

hydrogen storage,14 fuel-cell 

electrodes and electrolytes,15 

lightweight alloys and composites 

for vehicles,16 low-GWP (global 

warming potential) refrigerants,17 thermal-barrier coatings,18 desiccants for advanced HVAC,19 high-

voltage direct-current (HVDC) power transmission,20 high-temperature superconductors,21 and high-

strength permanent magnets (used in everything from wind turbines to fusion reactors).22 
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Innovative materials are important for enabling point-source carbon capture systems and CO2 removal systems, 

such as this direct air capture (DAC) plant in Iceland (photo credit: Julio Friedmann). 

B. Computational Materials Development 

Key scientific advances in the 1960s changed the way materials are designed and discovered. New 

computational methods finally enabled researchers to go beyond simply relying on intuition and 

incremental experiments; these methods allowed them to directly calculate the properties of new 

materials just from their chemical makeup and structure (“ab initio”). For example, following the 

discovery of the first high-temperature superconductor (which was largely an Edisonian process 

guided by intuition), other researchers quickly applied computational modeling to better understand 

the superconducting effect. This approach led to the discovery of other, better high-temperature 

superconductors.23,24 Ab initio modeling also led to materials discoveries for batteries, hydrogen 

storage, thermoelectrics, nuclear fuels and semiconductors.25 

As a result, materials research has increasingly shifted to computation. Advances in computing 

power, algorithms and data science have accelerated this trend. Governments have funded broadly 

integrated materials science projects that leverage information-science tools to share advanced 

algorithms, provide compute resources and disseminate the results of computations and 

experiments in increasingly massive materials property databases. Some examples include The 

Materials Project coordinated by U.C. Berkeley,26 the NOMAD database hosted by Humboldt 

University of Berlin,27 and the MateriApps project hosted by the University of Tokyo.28 These projects 
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contain hundreds of thousands to millions of entries on material properties and provide methods for 

users to run numerical calculations of materials properties on high-performance computers. The 

scale of materials datasets is a consequence of the enormous number of stable materials that could 

theoretically exist by the laws of chemistry and physics (estimated to be more than the number of 

atoms on Earth29), even though only a tiny fraction of these have actually been synthesized. 

Notably, modern computational materials science consumes enormous computing resources. In 

recent years, roughly one-third of available supercomputing has been dedicated to these materials-

related calculations.30 

C. Applications of AI in Materials Discovery and Design 

The complex nature of materials property predictions and the 

enormous amount of available data have sparked interest in 

using AI methods in computational materials science for several 

years. One key area where AI has been applied is directly 

predicting properties of new materials without performing full ab 

initio calculations. This approach trains AI models on large 

databases of previously computed and/or tested materials to 

learn quantitative relationships between atomic structure and 

relevant properties. This can save enormous compute time and 

cost. A recent application of this was the use of graph neural 

networks trained on data from the Materials Project to screen 31 

million hypothetically possible crystal structures to identify 

roughly two thousand of them with promising properties for 

further investigation.31 This AI approach can provide major 

benefits by down-selecting a small number of candidate materials 

for more intensive, high-accuracy studies. An important recent 

variation of this approach combined AI algorithms with ab initio 

calculations to generate and then filter potential new inorganic 

crystals, discovering more than 380,000 new, previously 

unknown stable materials.32  

This type of materials prediction and screening relies on large datasets, so ongoing efforts to develop 

AI-ready massive materials datasets are crucial. The recently released Open DAC 2023 dataset 

containing millions of high-accuracy calculations of the properties of thousands of sorbent materials 

  
Yttrium barium copper oxide (YBCO) was one 

of the first high-temperature superconductors 

to be discovered. Image was created using 

published crystallographic information and the 

Crystalmaker® program. Author: Gadolinist 
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for DAC is a good example of this kind of dataset, enabling multiple teams to train AI models for 

more extensive and focused rapid materials discovery for DAC.33 

While ab initio calculations will probably remain the most accurate method of predicting materials 

properties for some time, AI methods have begun to produce impressive results compared to first-

principles calculations. For example, an artificial neural network was recently developed to predict 

key characteristics of the surfaces of binary and ternary oxides, materials that may be useful as PVs 

and photocatalysts.34 AI can also be used to accelerate experimental characterization of materials, 

leading to much more efficient use of limited experimental resources. For example, x-ray diffraction 

(XRD), which measures the pattern of diffraction of x-rays that hit a sample, is a common technique 

for examining the crystal structure of materials (such as changes in cathode phases during battery 

charging). AI models trained on large experimental datasets of diffraction patterns and material 

crystal structures can directly interpret new XRD data in real time, dramatically speeding up 

experiments.35  

An enormous amount of prior materials research is available in scientific journal articles. Researchers 

typically survey the scientific literature before approaching a new problem, but the large number of 

relevant articles (often tens of thousands for a single material subtype) makes this process extremely 

difficult and prone to error and bias. AI in the form of natural language processing (NLP) can be used 

to extract information from these research articles and structure it systematically, known as 

“knowledge discovery.”36,37 NLP models trained on non-technical language struggle to handle 

scientific text, but materials-research-specific language models with better performance have begun 

to emerge.38 With the broad introduction of large language models (LLMs) in 2022, progress in 

materials-science knowledge discovery has begun to accelerate dramatically.39  

The complexity of advanced materials means that the process used to synthesize (produce) them 

must be tightly controlled. Small changes in process parameters can result in different, less useful 

materials, so identifying and optimizing synthesis parameters is crucial. AI-based knowledge-

discovery techniques have been successfully applied to the materials research literature to identify 

precise synthesis steps for key materials from thousands of research papers. For example, 

researchers used a neural-network-based NLP method to search 22,000 journal articles and extract 

precise synthesis parameters for optimized titania nanotubes.40 

Researchers are increasingly working to combine these use cases in integrated “autonomous 

materials” laboratories. These laboratories combine novel material formulations discovered by AI 

with physical synthesis guided by specific steps that other AI models summarize from the scientific 

literature. One recent example allowed the direct synthesis and testing of 41 novel compounds over 

17 continuous days of operation.41 However, designing these autonomous materials laboratories is 

challenging and requires new thinking about reproducibility and robust handling of various types of 

errors that can occur in real-world experimental settings.42 Ultimately, these types of laboratories 

should aim to achieve a positive feedback loop that integrates AI-guided theoretical materials design, 

automated chemical synthesis of physical samples, and automated materials characterization.43  

The use of generative AI is also growing rapidly within materials discovery and design. Generative AI 

can propose new hypothetical materials that are not currently in any materials database and may be 
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dramatically different from those that are. This is particularly powerful for the “inverse design” 

problem of materials, which starts with a desired property and uses an AI method to propose 

possible materials structures that may have it. As an example, researchers used a generative 

adversarial network (GAN) to propose 23 entirely novel structures made from three atoms 

(magnesium, manganese and oxygen) that displayed excellent properties as photoanodes for water 

splitting.44 Similarly, researchers recently used a generative AI method to rapidly design and partially 

validate novel materials for carbon capture, identifying six candidates with very high capacity for 

further testing.45 

D. Barriers 

Some important progress has already been made in applying AI techniques to computational 

materials discovery and design. Expanded research budgets, including additional funding for AI-

specific applications in materials science, would make even more progress possible.  

While high-speed internet connections have partly equalized access to materials datasets and high-

performance computing across the globe (with notable exceptions), the same is not true for physical 

materials-testing facilities. Real breakthroughs will ultimately depend on coupling AI-enabled 

computational materials discovery with high-throughput synthesis and testing/characterization. 

The vast and growing network of materials databases also poses a challenge for progress. Better 

integration of these datasets, including better harmonization of their metadata, is needed. This 

would improve the ability of researchers to train models and query materials properties across the 

full spectrum of existing data, avoiding silos and misinterpretations due to conflicting definitions. 

Explicitly encouraging inclusion of null results or failed experiments on materials—an uncommon 

step in most scientific research—could broaden the value of these datasets and provide more 

balanced training data for AI models. Governments have difficulty acting on these issues unilaterally 

since the global materials-science community must align on data exchange and metadata protocols. 

However, international standards bodies and scientific societies can lead the way through 

cooperative standards-setting efforts, potentially with government funding for support.46 

At a system level, the full life-cycle emissions implications of advanced materials are dependent on 

both the key property of interest (e.g., PV efficiency, CO2-adsorption capacity, etc.) and the emissions 

caused by synthesizing (producing) the material. Unfortunately, relatively little attention has been 

paid to synthesis emissions when discovering or optimizing novel materials, even though different 

synthesis pathways can have significantly different emissions.47 More use of AI tools is needed in 

predicting GHG emissions that would be caused by synthesizing novel materials, preferably in parallel 

with materials discovery and design efforts. This application of AI would allow better understanding 

of the complete life-cycle emissions that would result from using a novel material in energy and 

related technologies. 

Finally, advances in accelerating materials discovery and design with AI depend on improving the AI 

knowledge and skills of the materials-science workforce. Key issues in AI, such as understanding the 

applicability of trained AI models to problems outside the domain of their training data and 

quantifying the uncertainty of model predictions, are challenging and likely unfamiliar to 
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conventionally trained materials scientists.46 AI tools should therefore be incorporated as a central 

part of materials-science education, and training should also be offered to AI experts who are 

interested in applying their skills to developing novel materials. These education and training efforts 

could take place within traditional materials-science curricula or as part of external courses that can 

ensure the most recent models, numerical algorithms and datasets are presented and continually 

updated.  

E. Risks 

Powerful AI-enabled tools and techniques developed for materials innovation could be used to 

advance materials that enable highly emitting activities. For example, these tools could discover new 

high-temperature alloys for gas turbines48 or stronger, more durable alloys for drill bits used in oil 

and gas drilling.49 This means that advanced AI models for materials innovation may be “dual use” 

and lead to the development of high-performance materials that lower the cost of emissions-

intensive technologies, undermining momentum toward decarbonization. Policy guardrails are 

unlikely to be sufficient to address this issue. However, because many emerging decarbonized 

technologies depend on high-performance materials (as noted above), it may be the case that 

advanced materials-innovation capabilities are, on balance, more beneficial for low-emitting 

technologies. 

Separately, the pursuit of AI-enabled materials innovation at scale will require resources, and the 

appropriate allocation of research focus areas may be more challenging than in traditional materials-

discovery contexts. In particular, the inherent scaling advantages of AI may make it optimal to 

concentrate research efforts and data into a smaller number of larger research groups than is 

currently the case. This concentration could lead to “neglected” areas of materials innovation that 

fall outside of the increasingly centralized research agendas. Reasonable efforts to maintain a 

diversity of research teams leveraging AI models for materials innovation that are focused on 

enabling low-emissions technologies should be sufficient to address this risk. 
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F. Recommendations 

1. National governments should increase R&D budgets for AI-enabled materials discovery, with a 

focus on holistic design considerations that include full life-cycle GHG emissions. Support should 

also be made available for creating new automated and partly autonomous materials-testing 

laboratories in a variety of locations around the world. By combining AI and robotics, these 

facilities could unlock broad global access to rapid iterations in materials design and testing, 

reducing the challenges of participating in advanced materials development for researchers in 

resource-limited countries.50  

2. Private companies should engage directly with AI-guided materials-discovery efforts by clarifying 

manufacturability constraints and offering embedded emissions guidelines. This could also include 

articulating specific materials classes of interest for commercially relevant low-carbon 

technologies and issuing benchmarks and/or targets for key performance thresholds. 

3. National governments, academia and private companies should collaborate to develop and 

release (or expand existing) AI-ready datasets of material properties that can be used by other 

research teams to train high-performance models. This effort should use standard data formats 

and be at least loosely coupled to materials-synthesis and -testing facilities to validate results. 

4. National governments and academia should support increased education in AI techniques as part 

of materials-science and related degree programs. 

5. Scientific publishers should ensure that research publications are fully compatible with AI-guided 

research synthesis methods, including retroactively converting historical publications.  
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In 2023, the Earth experienced its hottest year in recorded history, primarily due to the burning of 

fossil fuels and land-use change.1 To reduce future heating, more than 190 nations have agreed on 

the necessity of reducing the greenhouse gas (GHG) pollution that causes climate change.2 Yet that 

pollution—and temperatures—continue to rise. With higher temperatures have come more extreme 

weather events, such as deeper droughts, more intense storms, bigger wildfires and extended heat 

waves. Sea-level rise has also accelerated. These climate-worsened events have caused economic 

damage. Researchers estimate that from 2000 to 2019, 185 climate-worsened events caused $2.86 

trillion in global damages, averaging $143 billion per year, a figure the researchers say likely 

underestimates the full harm.3 

Even if nations succeed in aggressively cutting GHG emissions, accumulated atmospheric pollution 

will continue to drive new climate-worsened extremes for at least the next few decades. Those 

extremes require humans to adapt. Climate adaptation involves preparing for and building resilience 

to the current and looming impacts of climate change. Adaptation efforts can protect lives, 

livelihoods, infrastructure and ecosystems. They can also save money. According to the Global 

Commission on Adaptation, investments in adaptation carry a high rate of return: an estimated $2 to 

$10 or more for every $1 spent.4 

Adaptation can take many forms, over many different timescales. On the scale of years to decades, 

the construction of climate-resilient physical infrastructure—such as power grids, roads, and flood 

and heat protection measures—can ensure continuity of critical services during extreme weather. On 

the scale of months, improved management of seasonal agriculture planting and harvesting can 

ensure food supplies. And on short timescales (days to weeks) improved forecasting and early 

warning serves as one of the most important adaptation measures to reduce economic damage and 

save lives. This chapter explores how artificial intelligence (AI) can enhance adaptation in the 

essential area of forecasting and early warning of extreme weather events, including wildfires and 

extreme flooding. 

A. Forecasting and Early Warning 

Accurate weather data and forecasting can assist people in adapting to climate change by giving 

them additional time to prepare for damaging events. For example, in the near term, storm forecasts 

can provide people time to seek shelter or evacuate and take resilience measures to reduce damage 

to structures, like removing flammable materials outside and protecting windows from high winds. 

Similarly, near-term forecasts can aid utilities in managing electricity production and transmission 

during extreme heat events. Seasonal forecasts can assist farmers in making better decisions as to 

when to irrigate, plant and harvest. They can also inform continuity planning for businesses worried 

about weather disruptions to supply chains. Multi-year forecasts can help building owners and city 

planners make informed decisions about where and how to build facilities that can withstand 

climate-worsened extremes.  

In recent years, near-term forecasting has attracted significant attention. Improved forecasting of 

impending extreme events saves lives when coupled with early warning. These systems can also 

empower people to take action to reduce the risk of economic harm from worsening climate 
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extremes. For example, people could move livestock to higher ground as storms approach or shut 

down electricity production as winds increase the risk of downed wires sparking wildfire.  

The safety and economic benefits of improved weather forecasts are large. One World Bank analysis 

estimated that early warning systems could reduce annual deaths from weather events and cut 

economic losses from disasters by $35 billion per year.5 In the US, forecasting improvements since 

2007 have saved an average of $5 billion per hurricane.6 However, about a third of the world’s 

population lives in areas without early warning systems.7 Countries that have limited or only modest 

weather forecasting and early warning coverage suffer disaster-related deaths at nearly six times the 

rate of countries with better coverage.8  

In 2022, the United Nations called for a concerted global effort to improve early warnings for all by 

2027.9 The number of countries with early warning systems has increased since 2015 when the 

World Meteorological Organization (WMO) and other international groups launched the Climate Risk 

and Early Warning Systems initiative. This initiative aimed at increasing the capacity of least-

developed and small-island nations to generate early warnings for seventeen hazards, ranging from 

flood to drought to sand and dust storms. In some places coverage includes seasonal outlooks.10 But 

only about half of all nations currently have adequate systems, with many countries in Africa, the 

Caribbean, the Americas and the Pacific experiencing significant gaps in coverage.8  

Weather forecasting has improved in recent years with the help of increased satellite data, better 

algorithms and evolving understanding of weather patterns.8 However, climate change has made 

forecasting more complex because it is shifting traditional weather patterns and changing the 

frequency and intensity of extreme weather events.11 There is considerable uncertainty about 

whether this shift will impact the accuracy of weather forecasting. Stanford University researchers 

found that for every Celsius degree of warning, the reliable forecast window may decrease in certain 

locations.12 However, other researchers argue that a changing climate does not inherently lead to 

more difficulty in making predictions or less accurate weather predictions.13 The introduction of AI-

based weather forecasting models further complicates this picture. 

B. Changing Risk Picture 

Despite continuing improvements in 

forecasting, escalating risks and damage 

from climate-worsened events sharpens the 

need for improved forecasting and early 

warning. Damage from climate extremes has 

climbed in recent years and is predicted to 

continue to rise. In 2023 alone, the United 

States suffered almost $95 billion dollars in 

damages from 28 separate extreme events.14 

By 2050, “global annual damages are 

estimated to be at 38 trillion dollars 
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annually.”15 According to World 

Bank data, five health risks 

worsened by a warmer climate 

could lead to at least 21 million 

deaths by 2050.16  

Consider the changing risk 

picture for wildfire. Climate 

change brings higher 

temperatures that can reduce 

humidity in the air, which in 

turn can dry out vegetation and 

lower soil moisture content. It 

also can produce intense winds. 

All these factors can lead to 

bigger and more intense wildfires. According to an analysis of satellite data, the frequency of 

extreme fires has more than doubled from 2003 to 2023. An explosion of extreme fires has occurred 

in Canada, the United States and Russia.17 Some parts of the western United States experience two 

more months of wildfire weather than a century ago.18 The UN Environment Programme estimates 

the number of wildfires will increase 50 percent by 2100.19  

Climate change has similarly altered the risk picture for flooding. A warmer atmosphere can hold 

more moisture. This increase can lead to extreme rainfall, otherwise known as “rain bombs,” that 

overwhelm existing flood infrastructure. Changing snowmelt patterns from higher temperatures can 

extend flood seasons in some areas. Higher ocean temperatures mean that storms can pull in more 

water vapor and heat, leading to stronger winds, higher storm surge and heavier rainfall. All of this 

can lead to more flooding when storms make land fall. Rising sea levels also add to tidal and coastal 

flood risk. Ocean warming can cause hurricanes to intensify more rapidly, leaving people less time to 

prepare. Scientists predict that climate change will drive greater flooding in the future. For example, 

according to the Human Climate Horizons platform, a collaboration between the Climate Impact Lab 

and the United Nations Development Programme (UNDP), in the past two decades, sea level rise 

alone has expanded the areas prone to flooding to places where over 14 million people live. By 2100, 

flood-prone areas will expand to places populated by over 73 million people.19  

C. How Can AI Improve Forecasting? 

AI can significantly enhance the accuracy of weather forecasting and reduce the cost and energy 

consumption of running forecasting computer models. Current state-of-the-art conventional 

medium-range weather forecasting models include the Global Forecast System (GFS) of the US 

National Oceanic and Atmospheric Administration (NOAA)14 and the Integrated Forecasting System 

(IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF).20 These numerical 

weather prediction (NWP) models solve complex physics-based equations for atmospheric, ocean 

and land behavior using best available science for the underlying interactions of heat, pressure, 

moisture and other fundamental physical and chemical parameters. 
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Typically, a single “run” of these models starts with the most recent observational data from 

satellites and weather stations and then calculates solutions for the equations at each hour in the 

future, up to 10–14 days in advance. Because weather systems are constantly changing, the error in 

the forecast grows dramatically at later times, using current models.21 Spatially, the model calculates 

the solutions at each location on a global grid with horizontal spacing of ~13 km at the surface and 

roughly 100 vertical layers throughout the atmosphere. The solution outputs include temperature, 

pressure, wind speed, precipitation, soil moisture and many other variables. 

National weather services, such as NOAA, run their primary medium-range weather model several 

times in a single day, using updated observational data each time, and continually release revised 

forecasts. Because of the size and complexity of these models, they require supercomputers and may 

take several hours to complete, consuming large amounts of energy in the process. (See Box 14-1.) 

These models could run faster if they used a sparser grid (e.g., only producing solutions every 20–30 

km) or less frequent time intervals (e.g., only producing solutions for 2-hour intervals rather than 

hourly), but this would reduce the quality and value of the forecasts.  

Many countries are unable to afford the supercomputing facilities and expert meteorology teams 

required to run these state-of-the-art weather models. The high cost and large energy consumption 

of conventional weather models has driven much of the interest in developing AI-based weather 

models. In general, these models run with vastly smaller computing power, meaning they could 

potentially use higher-resolution spatial grids and shorter time steps and/or be updated more 

frequently compared to conventional models. However, for this to be a widely accepted approach, 

AI-based weather models must demonstrate that they can achieve similar or better accuracy than 

conventional models, which use a full simulation of key atmospheric physics and chemistry 

equations. 
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In 2023, Huawei, a Chinese 

communications technology 

conglomerate, released the first AI-

based weather model that not only 

matched the accuracy of 

conventional models, but significantly 

outperformed them.22 Instead of 

using physics-based equations, 

Huawei’s PanguWeather (PGW) is 

based on a deep neural network 

trained on almost 40 years of historical observed weather data (ERA523). This enables it to emulate 

the statistical patterns hidden in that dataset. Compared to the ECMWF’s IFS model, it has smaller 

error in most cases (i.e., the forecasted weather vs the actual weather). Given the need for accuracy 

in forecasts, this result helped galvanize interest in AI-based weather forecasting.  

PGW also runs approximately 10,000 times faster than IFS, a huge reduction in cost and energy 

consumption. Ongoing studies of PGW (which is open source for noncommercial use) in an 

operational environment show that, for many tasks, its accuracy is comparable to IFS or better (still 

at vastly lower compute cost), although it underperforms in others.24  

Since the release of PGW, several other companies have released AI-based weather forecasting 

models, including GraphCast by Google, an American technology company. GraphCast also performs 

very well compared to IFS in many contexts.25 While private technology companies have largely 

driven the development of these models, government agencies have directly collaborated on their 

development in some cases. For example, the ECMWF worked with Google to develop GraphCast, 

and NASA is collaborating with IBM to release the Prithvi-weather-climate model.26 

AI-based weather forecasting models can assist in a variety of adaptation-related tasks, including 

extreme weather forecasting coupled with early warnings. The low cost and improved accuracy of AI-

based weather forecasting could potentially make the UN goal of “early warning for all by 2027” 

more achievable. 
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Box 14-1 

Energy Consumption of AI-Based Weather 
Forecasting Models 
AI-based weather models consume much less energy on a life-cycle basis than conventional weather 
models. Although they require large amounts of energy to train, they consume very little energy to use 
for weather forecasting (approximately 1000x less than conventional models). This dramatic energy 
benefit can translate into lower costs and can help improve access to weather forecasting globally. 

AI models consume energy during two main phases of their life-cycle: training and use (or “inference”). 
During training, the parameters of an AI model (which may number in the billions) are gradually 
adjusted to make the model’s output match patterns in a set of training data. In the case of weather 
forecasting, the training data are historic weather observations, and the goal of training is to “tune” the 
AI model to be able to output the weather patterns that were observed in the past. (In the case of 
LLMs, the training data are thousands to millions of documents spanning many types of writing.) 

Training an AI weather model can consume large amounts of energy. For example, training Google’s 
GraphCast model took approximately 4 weeks (28 days) of continuous processing on 32 TPU v4 devices 

(similar to GPUs).25 Because these devices have an average power consumption of 200 W, the 

electricity consumed in training one version of the model was about 4.3 MWh.27 If this electricity was 

supplied by average US grid power, it would have resulted in 1.7 tCO2 of emissions.28 The overall model 
creation process typically involves repeating this training process several times (at least four versions of 
GraphCast were trained, for comparison), so the total energy consumption could be an order of 
magnitude larger. However, Google (like many other data center operators) supplies some of its data 

center power using renewable energy, so the CO2 emissions may have been substantially lower.29 AI 
weather models will need to be retrained occasionally, consuming additional energy, but this is likely to 
be infrequent. 

Using a trained AI weather model to make a single forecast consumes far less energy than the training 
phase. The GraphCast model can calculate a 10-day weather forecast in under 1 minute on a single 
TPU,25 implying that the electricity consumption for making this forecast is only a few Watt-hours, or 
approximately 1 million times less than the training phase. Of course, under normal forecasting 
operations the model would run multiple times a day to update forecasts, repeated every day for the 
foreseeable future. Nevertheless, the cumulative electricity consumed during the use phase would 
likely be quite small. 

By contrast, current leading medium-range weather models, such as the European Centre for Medium-
Range Weather Forecasts’ (ECMWF’s) Integrated Forecast System (IFS), take multiple hours to run on a 

large supercomputer and consume tens of kWh per run.30 These models do not require training, so the 
only energy consumption is during the use phase (although there are embedded CO2 emissions from 
producing the dedicated supercomputing equipment). These comparisons must be viewed carefully 
because the models do not necessarily produce solutions at the same spatial resolution; however, the 
general comparison is broadly correct. 
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In addition to predicting extreme weather events, related AI-based models can increasingly provide 

early warning for river flooding and wildfires. For example, Google and ECMWF recently collaborated 

to demonstrate a flood prediction model based on a deep neural network that can predict river flood 

events with a five-day lead time and comparable accuracy to same-day lead time predictions from 

the conventional Global Flood Awareness System.31,32 Google now makes predictions available for 

free and in real time to dozens of countries.33  

Companies have also developed AI models to predict where wildfires are likely to ignite. For example, 

Athena Intelligence’s model aims to identify the probability of a wildfire occurring within a specific 

geographic area, the potential severity and intensity of that wildfire, and the potential losses if such a 

wildfire were to happen. AI-driven prediction models primarily use remote sensing data, and recent 

results are quite promising in terms of both high accuracy and low computational cost.20,34 Some 

emerging use cases of AI for wildfire focus more on early/rapid detection of new wildfires. This 

includes systems in several US states, including California and Oregon, that use networks of cameras 

and AI to automatically identify wildfires soon after they ignite. These systems aim to optimize 

allocation of scarce firefighting resources and potentially extinguish fires before they spread.35,36 In 

Türkiye, the World Economic Forum (WEF) has worked to develop the FireAId program, which uses 

AI to create an interactive map of fire risk. That initiative has predicted wildfire outbreaks 24 hours in 

advance with high accuracy.37 

Longer-term forecasts also help climate adaptation, including efforts to limit crop failures during 

droughts. The time horizon for useful predictions of these events runs from weeks to months since 

adaptation actions, such as food shipments or water conservation, take this long to implement. 

Application of AI to drought prediction has begun to make significant progress, although important 

challenges remain.38-41 Several government-led projects focus on applying AI to prediction of 

drought, including the European Space Agency’s AI for Drought project42 and NASA’s TERRAHydro 

software system.43 The AI for Drought initiative has downscaled existing satellite-based drought 

prediction estimates to make them higher resolution and thus more geographically precise.44 

D. Barriers  

Despite the ability of AI to improve forecasting and early warnings, barriers to adoption remain. 

Those barriers include insufficient data and technical expertise and capacity, lack of confidence, lack 

of supporting infrastructure, and financial constraints. 

i. Insufficient Data  

AI systems are only as good as the data used to train them.45 Limited or incomplete data for certain 

weather conditions can impair accuracy. Since AI models rely on historical data, they may struggle 

with the more extreme, record-breaking events that climate change brings.46 This challenge becomes 

even more acute in developing countries that lack high-resolution observational data about 

atmospheric or other conditions. For example, India has close to 10,000 glaciers in the Himalayas, yet 

it has detailed in situ data on only 30 of those.47 Inaccurate or incomplete data can degrade the 

quality of predictions.48 While satellite-derived datasets on important parameters, such as land 
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surface temperature and vegetation, 

are globally available, other important 

input parameters for training data 

sets are far more available in 

developed countries than in 

developing ones.49  

Although the WMO has pushed for 

greater standardization of observing 

practices and instrumentation, when 

it comes to weather forecasting, 

different countries use different 

technologies and have different 

hardware standards. Differences arise in the level of resolution, with some countries prioritizing high-

resolution localized forecasts while others focus on broader forecasting. Countries also use different 

combinations of data sources, be it on-the-ground observations or satellite data. And of course, 

some countries lack sufficient resources and technology to support robust weather forecasting, with 

high-income countries enjoying more accurate forecasts as a result. 

ii. Insufficient Technical Expertise and Capacity 

Human expertise is essential for interpreting results and handling complexities that AI models may 

not be able to interpret. Currently only a limited pool of human capital and expertise exists. The lack 

of talent is particularly challenging for public agencies since they often cannot compete with private 

salaries. This will make it imperative for governments to invest in recruiting, training and retaining AI 

experts. 

iii. Lack of Confidence 

With AI weather-forecasting models, results are not easily traced back to the tens of millions of 

underlying assumptions upon which they rest.46 These models are a “black box”, often lacking 

transparency as to how conclusions are reached. Thus, some meteorologists may be hesitant to rely 

on AI-based predictions since, if they are wrong, it is difficult to understand why. This issue is the 

focus of substantial research, and more “interpretable” AI models may eventually be developed.50 

For example, in the United States, NOAA has taken a cautious approach to adopting recent 

technologies, including AI, although it is working to integrate AI and understand the opportunities 

and obstacles.51 

iv. Lack of Supporting Infrastructure 

Translating forecasts into actionable information requires supporting infrastructure. For example, 

ready access to the internet can speed dissemination and receipt of warnings based on a storm 

forecast. But some communities and individuals may lack internet access, or power failures may 

impede dissemination.8 Currently only about 20 percent of poor nations have a plan to act on early 

warnings as compared to about half of the nations in the Asia-Pacific region.52 
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v. Financial Constraints 

Lack of adequate funding will remain a challenge, both for research and development (R&D) of early 

warning systems and for their deployment and use. Establishing an early warning system takes 

money. So does maintenance of the system. Developing complex AI models requires significant 

computational resources (although they require far fewer to use operationally).48 Because weather 

patterns and climate conditions are dynamic, AI models also need updating and retraining to capture 

the latest information.48 

Government agencies will likely require additional funding to evaluate emerging technologies for 

accuracy and reliability. Given the speed with which these technologies are changing, the need for 

funding could increase over time. 

E. Risks  

While the accuracy of some flagship AI medium-term weather models is high, they do not currently 

perform as well as conventional models in some areas, such as forecasting tropical cyclone 

intensity.24 They may need to be deployed in combination with conventional models, with the 

forecasts integrated or synthesized. 

The relative ease and low cost of AI-based weather forecasting may undermine support for public 

meteorological agencies, as some policymakers may conclude that they are no longer necessary. 

Lack of adequate funding could undermine the ability of public meteorological agencies to assess and 

understand the performance of AI-based models and to collect the observational data on which 

these models are based. This in turn could increase dependency on private sector companies for the 

public service of weather forecasting. 

While major private companies currently offer these flagship AI weather models as open source, that 

could change in the future. Legislators should carefully weigh the appropriate role of public funding 

as opposed to private development.  
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F. Recommendations  

1. National governments, international organizations, and the private sector should invest in AI 

models that increase accuracy, improve the timeliness and reduce the cost of extreme weather 

event forecasts. They should also collaborate on ways to evaluate accuracy and to develop 

frameworks that promote long-term sustainability. 

2. National governments should: 

▪ continue collecting and publishing weather data as a foundational public service; 

▪ provide a base level of access for poorer communities and countries;  

▪ explore innovative programs to attract the necessary talent to lead public AI systems (this 

could include government-sponsored fellowships, additional compensation and opportunities 

for continued education); 

▪ integrate AI training into professional development programs for meteorologists and climate 

scientists working in public sector weather agencies; 

▪ ensure robust understanding of the limitations and opportunities of AI-assisted forecasting 

and early warning; and 

▪ promote and construct necessary infrastructure to disseminate forecasts and warnings 

effectively. 

3. National governments and international organizations should develop the capacity to build and 

use cutting-edge AI-based weather models as those models improve in the years ahead. Public-

private partnerships are important for equity. National governments and international 

organizations should also support the expansion of AI-based early warning systems for extreme 

weather to underserved regions, ensuring equitable access and bridging the gap in global 

forecasting capabilities. 

4. National governments, international organizations, and the private sector should prioritize 

collection and integration of weather and climate data from the global south and provide 

technical support for adopting AI-based forecasting models to countries that have previously 

lacked advanced forecasting capabilities due to resource constraints. 

5. Research institutions and AI developers should prioritize creating AI models that are transparent 

and interpretable to help meteorologists and emergency responders gain trust in AI-generated 

weather predictions. 

6. Emergency management and humanitarian aid agencies should implement AI-driven decision 

support systems to optimize response strategies during extreme weather events, such as 

evacuations or resource allocation, based on real-time data and predictions. 
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AI systems need energy. Manufacturing silicon chips requires energy for mining minerals and 

operating complex machinery. Building data centers requires energy for making steel and concrete. 

Training and running AI models requires energy for electricity to power servers. Lighting and cooling 

data centers requires energy for electricity as well. 

This energy use does not necessarily result in significant greenhouse gas (GHG) emissions. When the 

electricity for a data center comes from new solar, wind or nuclear power, for example, the GHG 

emissions from data-center operations are modest. Amazon, Microsoft, Google and Meta—the 

world’s largest data center operators—are among the world’s largest purchasers of renewable 

power.1 However some activities essential for AI—such as making steel and concrete—use only 

modest amounts of low-carbon energy. 

A review of the current literature suggests the following conclusions: 

▪ Current overall impacts of AI on GHG emissions could be positive or negative. Much better 

data collection is needed to assess overall impacts with confidence. 

▪ GHG emissions from generating power for AI operations at data centers and on edge devices 

(“AI operational emissions”) are less than 1%—and perhaps much less than 1%—of global GHG 

emissions.  

▪ AI operational emissions will likely increase in the years ahead. This increase could be modest 

or quite substantial.  

▪ In the medium- to long-term, the overall impacts of AI on GHG emissions could be positive or 

negative. The GHG benefits of using AI throughout the economy could significantly outweigh 

GHG emissions increases due to AI. However, the opposite could occur as well. The impact of 

AI on GHG emissions will depend 

on decisions by policymakers, 

business leaders, researchers and 

others in the years ahead. 

This chapter starts with background on 

GHG emissions from AI and data center 

power demand. With that foundation, 

the chapter examines current and future 

GHG emissions from AI, concluding with 

recommendations.  

A. Background 

The phrase “GHG emissions from AI” is quite broad. It includes: 

▪ AI operational emissions, 

▪ GHG emissions from manufacturing equipment and building infrastructure used for AI (“AI 

upstream emissions”) and 
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▪ The emissions impacts of applying AI in countless thousands of ways throughout the economy, 

some of which reduce GHG emissions (such as the many applications of AI discussed in this 

Roadmap) and some of which increase GHG emissions (such as when AI is used to cut the cost 

of some polluting activities). 

Estimating GHG emissions from AI is challenging, for several reasons. 

First, data collection and assessment methodologies are inadequate. The lack of standardized 

reporting practices and metrics across the AI industry makes it difficult to provide precise and 

confident emissions estimates.2-4 

Second, the shared use of computing resources in cloud environments can make it difficult to isolate 

and accurately attribute emissions to AI-related activities. Data center operators do not routinely 

keep records distinguishing the time a server is running AI-based software from the time a server is 

running non-AI-based software. (Doing so would be difficult.) As a result, it can be challenging to 

correctly allocate overall GHG emissions from computing infrastructure to the subcategory of AI 

applications. 

This challenge is diminished by the increasing use of specialized computing chips, such as graphics 

processing units (GPUs) and tensor processing units (TPUs), which are used almost exclusively for AI-

based software. However allocating emissions from other AI hardware can be a challenge. 

Third, data center emissions are location-specific. A data center’s GHG emissions depend on the fuels 

used to generate electricity for that data center. Many data centers purchase electricity from local 

power grids, and the fuel mix in local power grids varies greatly around the world. To project future 

GHG emissions from data centers, one must make assumptions about not only the increase in overall 

data center power demand but also the locations where data centers will be built and the sources of 

electricity data centers will use. 

Finally, AI is a transformational technology at an early stage of deployment. Forecasting how AI will 

impact many economic processes and societal patterns in the years and decades ahead is difficult if 

not impossible. As a result, forecasting the GHG impacts of AI deployment with high confidence is 

challenging as well.5 

Despite these challenges, a growing body of literature seeks to estimate current and future GHG 

emissions. These studies are essential for understanding and managing AI’s GHG impacts. After 

reviewing the related topic of data center power demand, we examine these studies below. 

B. Data Center Power Demand 

There are roughly 11,000 data centers globally (Aljbour et al, 20246 at p. 11). Roughly half of global 

data center capacity is in the United States, 15% is in Europe and 15% is in China.7 

Data centers are central to the AI industry. Most AI models are trained, tuned and run at data 

centers. Although some AI computation is beginning to move to edge devices, most AI takes place at 

data centers and will continue to do so for the foreseeable future.8-10 
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Data centers perform many functions other than AI—hosting websites, processing financial 

transactions, running email networks and much more. Only a fraction of data center workload is 

attributable to AI. Recent estimates of that fraction vary widely: 

▪ KKR Insights estimates that, today, roughly 35% of the workload at Amazon, Google, Meta and 

Microsoft data centers is for AI and that this figure will rise to more than 50% by 2030.11 

▪ A 2022 paper in Nature Climate Change by Lynn Kaack et al. estimates that “less than one-

quarter” of the workloads and traffic of cloud and hyperscale data centers is related to 

machine learning (ML).3 

▪ FTI Consulting estimates that roughly 10% of data center power demand globally is for AI, 

growing to roughly 25% by 2030.12 

▪ The Electric Power Research Institute (EPRI) estimates that about 10–20% of data center 

electricity use comes from AI applications.13 

▪ A 2024 paper in Communications of the ACM by David Patterson et al. estimates that, from 

2019 to 2021, ML “represented between 10% and 15% of the total annual operational energy 

use in the Google cloud” (Patterson et al., 202414 at p. 88). 

▪ Goldman Sachs estimates that the percentage of data center workload attributable to AI 

globally was less than 1% in 2024 but will increase to roughly 19% by 2028 (see “Data center 

power demand graph15). 

▪ A paper published in Nature by Amy Luers et al. in April 2024 estimates that roughly 1% of data 

center power demand in 2023 came from AI processors.5 

The wide differences in these estimates reflect different definitions of “AI” (with some studies 

focused on generative AI and others on ML more broadly), data gaps, the lack of standard 

measurement protocols and other factors. 

In the past year, data center power demand has received considerable media attention, often in the 

context of the growth of AI.16-18 We explore that topic below. 

i. Current data center power demand  

Data centers use substantial amounts of electricity. To operate a data center, electric power is 

needed for servers, data storage equipment, networking equipment, cooling systems, lighting and 

more.  

In 2023, roughly 1.5% of global electricity demand came from data centers (IEA 202419 at p. 19). In 

the United States, data centers were responsible for 3% of electricity demand.20 The figure was 1–2% 

in Japan,21 3.5% in China22 and 3.5% in the European Union.23  

Although these amounts are significant, they are smaller than the electricity used in some other 

sectors. In 2023, for example, 4% of global electricity demand came from aluminum smelters (IEA 

202419 at p. 19). According to IEA experts, “annual electricity consumption from data centers globally 

is about half of the electricity consumption from household IT appliances, like computers, phones 

and TVs."24  
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Data centers tend to be built in clusters. In places where data centers are concentrated, their share 

of power demand is much greater than the global average. In Loudon County, Virginia, USA—which 

has the world’s largest number of data centers by far—roughly a quarter of electricity demand 

comes from data centers.25 In Ireland (the largest data center hub in Europe), 21% of electricity 

demand came from data centers in 2023.26 In Singapore (one of the leading data center hubs in 

Asia), 7% of electricity demand comes from data centers.27 

ii. Future data center power demand 

Data center power demand is growing rapidly. Goldman Sachs Research projects 160% growth 

globally by 2030.15 EPRI projects 5–15% annual growth in the United States until 2030 (EPRI 20246 at 

p. 5), several research firms project annual growth in the 7–9% range in the European Union23,28,29 

and the Open Data Center Committee projects annual growth of roughly 10% in China.30 

The growth in data center power demand is coming from many sources, not just AI. Streaming 

services, 5G networks, social media and online gaming are all fueling surging data center 

demand.11,31 Yet AI is an important (and perhaps the most important) factor.30  

Although power demand from data centers is growing rapidly, it is smaller than power demand 

growth from several other sectors. In the IEA’s Stated Policies Scenario, power demand growth for 

electric vehicles (EVs) and space cooling in buildings are each more than three times greater than 

power demand growth for data centers. According to IEA, "data centers look set to remain a 

relatively small driver of overall electricity demand growth at the global level in the decade to come. 

Nonetheless, constraints at the local level may be significant.” (IEA 202432 at p. 188.) 

Those constraints are especially 

significant in countries including 

the United States, Ireland, 

Singapore and Japan. In the past 

several years, electric utilities in 

these countries and other 

locations have received a record-

breaking number of requests from 

data center operators for 

electricity interconnections. These 

requests are creating significant 

challenges. In Loudon Country, 

Virginia, for example, applications 

for electricity interconnection 

from data center operators are 

currently facing several years of 

delay. These applications are 

experiencing similar delays in 

many other locations as well.12,33  
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However, many of the applications for electricity interconnection submitted by data center operators 

do not represent actual demand. Due to delays and uncertain prospects for approvals, many data 

center operators have applied for more interconnections than they need, hoping that some 

applications will be successful. This “application frenzy” has some similarities to a run on a bank or 

the panic buying of essential goods at the start of the COVID epidemic.34  

Still, data center power demand is rising rapidly.35 In the past year, many research organizations, 

investment banks, consultancies and energy companies have released forecasts for increased power 

demand from data centers. Table 1 summarizes the results of some of these studies.  

 

Table 1. Power consumption projections for data centers.  

AUTHOR 
PROJECTED 
ANNUAL 
GROWTH RATE 

TIMEFRAME REMARKS  

Global  

IEA, Electricity 2024 

(January 2024)36 at p.31 

21% 2022–2026 Electricity consumption by data 
centers, cryptocurrencies and AI 
globally increases from 460 TWh in 
2022 to 620–1050 TWh by 2026 

IEA, Electricity Mid-Year 
Report  

(July 2024)19 at p.19 

19% 2022–2026 Electricity consumption of data 
centers increases from 1–1.3% of 
global demand in 2022 to 1.5–3% by 
2026 

Goldman Sachs Research, 
2024 

(May 14, 2024)15 

14.5% 2023–2030 Electricity consumption by global 
data centers increases from 411 TWh 
in 2023 to 1063 TWh in 2030; AI’s 
percent of global data center load 
increases from 3% in 2023 to 20% in 
2030 

Data centers increase from 1–2% of 
global electricity consumption now to 
3–4% by end of the decade 

SemiAnalysis, 202437 25% 2024–2030 Electricity consumption by data 
centers reaches 4.5% of global 
consumption by 2030 

Morgan Stanley, 202438 70% (GenAI only) 2024–2027 Global power usage from GenAI 
grows by 70% CAGR (compound 
annual growth rate) in 2024–2027 to 
224 TWh 

  

https://iea.blob.core.windows.net/assets/18f3ed24-4b26-4c83-a3d2-8a1be51c8cc8/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/18f3ed24-4b26-4c83-a3d2-8a1be51c8cc8/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/234d0d22-6f5b-4dc4-9f08-2485f0c5ec24/ElectricityMid-YearUpdate_July2024.pdf
https://iea.blob.core.windows.net/assets/234d0d22-6f5b-4dc4-9f08-2485f0c5ec24/ElectricityMid-YearUpdate_July2024.pdf
https://iea.blob.core.windows.net/assets/234d0d22-6f5b-4dc4-9f08-2485f0c5ec24/ElectricityMid-YearUpdate_July2024.pdf
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
https://www.semianalysis.com/p/ai-datacenter-energy-dilemma-race
https://www.morganstanley.com/ideas/ai-energy-demand-infrastructure
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United States33 

EPRI, 2024 (May 28, 2024)6 5–15% 

 

2023–2030 Electricity consumption by US data 
centers increases from 150 TWh in 
2023 to 196–404 TWh by 2030, 
taking 5–9.1% of 2030 electricity 
consumption  

BCG, 202439 

 

15–20% 2024–2030 Electricity consumption by US data 
centers increases to 800–1050 TWh 
(100–130 GW capacity) by 2030 

McKinsey, 202340 9.5% 2022–2030 Electricity consumption by US data 
centers increases from 149 TWh (17 
GW capacity) in 2022 to 307 TWh (35 
GW capacity) in 2030 

Columbia Center on Global 
Energy Policy, 202441 

 2024–2027 In 2027, GPUs will be roughly 4% of 
total US electricity sales and roughly 
1.7% of total electric capacity 

European Union 

Joint Research Centre EU, 
2024 at pp.3,823 

5–17% 2022–2030 Electricity consumption by EU data 
centers increases from 45–65 TWh in 
2022 to 98.5–160 TWh in 2030 

Savills, 202429  8.3% 2024–2027 27% increase to 13.1 GW capacity in 
2027 

Mordor Intelligence, 202428 7.4% 2024–2029 Data centers reach 3.2% of EU 
electricity consumption in 2030, 
citing official EU sources 

China 

China State Grid Energy 
Research Institute, 202142 

7.1% 2020–2030 Electricity consumption by data 
centers increases from 200 TWh in 
2020 (2.7% of total power demand) 
to 400 TWh in 2030 (3.7% of total 
power demand) 

China Com-service White 
paper, 202343 

6% 2022–2025 Electricity consumption by data 
centers in China increases from 101 
TWh in 2022 to 120 TWh in 2025 

Japan 

Japan Transmission 
Operators, 202421 

6–12% 2022–2050 Electricity consumption by data 
centers owned by three leading 
communications companies in Japan 
increases from 8.6 TWh in 2022 
(slightly less than 1% of total power 
demand) to 43–211 TWh in 2050 

https://www.epri.com/research/products/3002028905
https://www.linkedin.com/pulse/us-data-center-power-outlook-balancing-competing-consumption-lee-iz4pe?trk=article-ssr-frontend-pulse_more-articles_related-content-card
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy
https://www.energypolicy.columbia.edu/projecting-the-electricity-demand-growth-of-generative-ai-large-language-models-in-the-us/
https://www.energypolicy.columbia.edu/projecting-the-electricity-demand-growth-of-generative-ai-large-language-models-in-the-us/
https://publications.jrc.ec.europa.eu/repository/handle/JRC135926
https://publications.jrc.ec.europa.eu/repository/handle/JRC135926
https://www.savills.com/research_articles/255800/362604-0
https://www.mordorintelligence.com/industry-reports/europe-data-center-power-market
https://english.www.gov.cn/statecouncil/ministries/202112/09/content_WS61b13edac6d09c94e48a1f81.html#:%7E:text=According%20to%20a%20report%20from%20China%27s%20State%20Grid,for%202.7%20percent%20of%20the%20country%27s%20electricity%20consumption.
https://english.www.gov.cn/statecouncil/ministries/202112/09/content_WS61b13edac6d09c94e48a1f81.html#:%7E:text=According%20to%20a%20report%20from%20China%27s%20State%20Grid,for%202.7%20percent%20of%20the%20country%27s%20electricity%20consumption.
https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf
https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf
https://www.jaif.or.jp/en/news/7022
https://www.jaif.or.jp/en/news/7022
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RESOURCE ADEQUACY 
by Mariah Frances Carter and David Sandalow 

"Resource adequacy” is the ability of an electric utility to meet the needs of its customers even 

during periods of peak usage or unexpected disruptions. 

When a utility experiences resource adequacy problems, several issues can arise:  

▪ First, blackouts or brownouts become more likely, especially during extreme weather 

events and other periods of high demand. This occurs because the utility may not have 

enough generation capacity or demand response resources to meet the peak electric 

load.  

▪ Second, higher electricity prices are possible because the utility may need to purchase 

power at premium prices or rely on expensive, less efficient and more polluting peaker 

plants to meet demand. 

▪ Third, the stability and resilience of the electricity system can be compromised, causing 

operational problems with grid management. 

Surging power demand—in part due to data centers—is causing resource adequacy problems 

in some regions around the world. This demand surge contrasts sharply with the experience in 

most developed countries in recent years. For most of the past two decades, power 

consumption in the United States, Europe and Japan was mostly flat. However, this is changing 

dramatically as new factories, EVs, data centers, crypto currencies and other sources create 

significant new demand for electric power. The International Energy Agency (IEA) projects 

power demand in the United States will grow 1.5% per year in 2024–2026, with a third of that 

growth due to data centers (IEA, 202436 at p. 111). The Japanese government recently released 

a report forecasting an increase in long term electricity demand for the first time in twenty 

years, due in significant part to semiconductor plants and data centers. The report estimates 

that electricity demand will grow from 1 trillion kilowatt-hours (kWh) in this decade to about 

1.35-1.5 trillion kWh in 2050.44  

Power demand is growing especially fast in regions where data centers are clustered. In the 

United States, this includes Northern Virginia, Dallas-Ft. Worth, Chicago, Silicon Valley and 

Phoenix. (The Phoenix-based Arizona Public Service recently estimated average load growth in 

its service territory of 3.7% per year from 2023 to 2038. This is an additional 24 TWh of annual 

electricity consumption, with more than half of that increase coming from data centers.)45 

Globally, top areas include Frankfurt, London, Paris, Singapore, Tokyo, Hong Kong, Sydney and 

Querétaro (Mexico). All of these regions are facing 20–25% annual growth in data center 

capacity with significant related power demands.46  
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C. Current GHG Emissions from AI 

Current overall impacts of AI on GHG emissions could be positive or negative. Assessing those 

impacts with confidence is difficult due to gaps in data collection, a lack of standard assessment 

methodologies and the rapid pace of AI deployment in recent years. 

Recent studies suggest the following:  

▪ AI operational emissions are less than 1%—and perhaps much less than 1%—of total GHG 

emissions. 

▪ AI upstream emissions contribute to AI’s GHG footprint. Much better data are needed to 

assess the magnitude of these emissions with confidence.  

▪ The GHG impacts of applying AI in countless thousands of processes throughout the economy 

are difficult to assess. These impacts could be beneficial on a net basis, outweighing AI 

operational emissions, AI upstream emissions and other GHG increases associated with AI. 

However, these impacts could also be negative on a net basis, increasing global emissions. 

This section discusses each of these topics in turn. 

i. AI operational emissions 

Based on the existing literature, it is reasonable to conclude that GHG emissions from computing 

operations for AI are less than 1%—and perhaps much less than 1%—of global GHG emissions.  

Relevant studies include the following. 

▪ In a 2024 Nature article, Amy Luers et al. wrote that “in terms of total global greenhouse-gas 

emissions, we calculate that AI today is responsible for about 0.01%.”5 The estimate is based 

on the power consumption of AI processors in 2023. 

▪ In a 2022 Nature Climate Change article, Lynn Kaack et al. estimated that cloud and hyperscale 

data centers are responsible for 0.1–0.2% of global GHG emissions and that roughly 25% of 

their workloads are related to ML.3 

▪ In a 2022 study, Sasha Luccioni et al. found that GHG emissions from training several current 

large language models (LLMs), including GPT-3 and BLOOM, ranged from roughly 30 to 550 

tonnes CO2e.48 In a 2021 paper, David Patterson et al. provided similar estimates (noting that 

Utilities in regions with high concentrations of data centers are responding to this increased 

demand with new generation, demand response and other tools. In Ohio, one utility is asking 

permission to impose special tariffs on data center customers to help pay for expanding and 

strengthening the grid.47 However the growth in power demand is outpacing the utilities’ 

ability to respond in some places. Power connections for new data centers will need to be 

delayed—in some cases for years—to address resource adequacy concerns.12 
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the average commercial plane emits roughly 180 tonnes CO2e flying from San Francisco to 

New York).49 (550 tonnes CO2e is roughly 0.000001% (1x10-8) of global GHG emissions, which 

were roughly 54 GtCO2e in 2022.)50 

▪ In a 2023 report, IEA estimated that “Data centres and data transmission networks are 

responsible for 1% of energy-related GHG emissions.” The estimate included both upstream 

and operational emissions.51  

▪ In a 2021 paper in Patterns, Charlotte Freitag et al. estimated that 1.8–2.8% of global GHG 

emissions came from the information, communications and technology sector. This estimate 

included both upstream and operational emissions.52 

These studies explore related but somewhat different topics, offering a range of results. Some of the 

studies are based on data that are several years old and therefore partly out of date. (The AI market 

is growing rapidly—at compound annual growth rates in the range of 35% according to some 

estimates.53-55) However, combined with the estimates of AI’s share of data center workload 

(summarized in Section B of this chapter above), these studies suggest that 1% is a likely upper 

bound for the share of global GHG emissions from computing operations for AI and that the actual 

share could be much less. 

ii. AI upstream emissions 

Upstream emissions from AI must be part of 

any complete GHG accounting for AI; however, 

the literature on upstream emissions from AI is 

sparse.56,57 A research agenda to better assess 

the magnitude of AI upstream emissions 

should consider several factors, including the 

following. 

First, many upstream AI activities, such as 

manufacturing silicon chips and making steel 

and cement for data centers, rely heavily on 

fossil fuels for energy. This contrasts with AI 

operations at data centers, where power use is 

often matched with renewable energy.  

Second, major data center operators, including Google and Microsoft, report that the vast majority 

of their emissions are Scope 3 emissions (defined as “indirect emissions in the value chain of a 

company, other than emissions from the generation of purchased energy”).58 For Google, the figure 

is 75% (Google, 202459 at p. 38), and for Microsoft it is 96% (Microsoft 202460 at p. 15). Scope 3 is a 

broad category that includes many sources of emissions beyond AI upstream emissions, but still 

these corporate reports suggest the possibility that upstream emissions from AI could be significant 

and merit attention. (Again, more research is needed.)    
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Third, studies that have begun to explore topics related to upstream emissions from AI include:        

▪ A 2024 paper in Communications of the ACM by David Patterson et al., which found that 

“embodied server CO2e was ∼115x larger than ML operational CO2e in Google datacenters in 

2021” (at p.95).14 

▪ A 2024 IEEE paper by Carole-Jean Wu et al., which found that upstream GHG emissions for 

University LM, a multilingual language translation model, were roughly 50% of operational 

emissions.61 

▪ A 2021 study in HAL Open Science by Maxime Pelcat, which found that annual emissions from 

semiconductor manufacturing were roughly 76.5 Mt CO2e globally (0.15% of global GHG 

emissions).62 Semiconductor manufacturing is an important part of the value chain for AI, 

although semiconductor chips are used in countless thousands of products and only a small 

fraction of semiconductor chips manufactured each year are used in AI. 

iii. Impacts of AI applications on emissions 

Data quantifying the current impacts of AI applications on GHG emissions are sparse.  

The phrase “impacts of AI applications on GHG emissions” is potentially confusing. In this context, it 

means how use of AI impacts GHG emissions, not including AI operational emissions or AI upstream 

emissions. For example: 

▪ When a municipality uses AI tools to help with traffic management, how much do vehicle 

emissions fall?  

▪ When a commercial building uses AI tools to help with energy management, how much do 

emissions at that building and at the local power grid fall? 

▪ When an industrial facility uses AI tools in its operations, how much do emissions at that 

facility rise or fall? 

A few studies have estimated the current GHG emission benefits that come from using AI in some 

settings.  

▪ In a 2021 report, BCG experts reported that their clients had achieved 5–10% emissions 

reductions using AI63  

▪ In a 2021 report, Capgemini reported that organizations had reduced GHG emissions by 13% 

using AI64  

However, the literature on this topic is sparse. Qualitative and anecdotal assessments are more 

common than quantitative assessments. Few if any studies have attempted to quantify the potential 

emissions benefits of AI-enabled breakthroughs in areas such as battery chemistry or carbon capture. 

Chapters 3–13 of this Roadmap contain many examples of ways in which AI is currently being used to 

reduce GHG emissions, including the use of AI to monitor methane emissions, optimize fertilizer 

application, improve low-carbon steel manufacturing and much more. Taken together, these and 

other AI applications may already be having a meaningful impact in reducing GHG emissions. 

However, much more data collection and analysis are needed to provide rigorous estimates.   
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The literature on the extent to which AI applications may be increasing GHG emissions is especially 

sparse. When AI is used in carbon-intensive industries, such as mining, manufacturing and oil-and-

gas production, AI could increase GHG emissions by making carbon-emitting activities more cost-

competitive. In recent years, the oil and gas industry has rapidly adopted AI tools in exploration and 

production activities, improving operational efficiencies and cutting costs.65-67 Lower-cost oil and gas 

production seems likely to lead to higher GHG emissions, although the analysis is complicated by (1) 

the potential for cheap natural gas to reduce GHG emissions by displacing coal, if leakage rates for 

that natural gas are kept to a minimum, and (2) the partially-managed nature of global oil markets. 

(See text box below.) 

Some AI applications are currently reducing GHG emissions. Other AI applications are probably 

increasing GHG emissions. Comprehensive data on the cumulative impacts of AI applications on GHG 

emissions are lacking. 

iv. Further study 

In an interesting 2024 paper in Scientific Reports, Bill Tomlinson et al. compare (1) GHG emissions 

that come from using AI for writing and drawing tasks (both upstream and operational emissions) 

with (2) the GHG footprint of humans performing the same tasks. Tomlinson et al. found that “AI 

systems emit between 130 and 1500 times less CO2e per page of text generated compared to human 

writers, while AI illustration systems emit between 310 and 2900 times less CO2e per image than 

their human counterparts.”68  

The literature on GHG emissions from AI is growing.69-71 However there are no widely used protocols 

or standards for measuring GHG emissions from AI systems or the GHG benefits of AI applications. 

Improved measurement protocols and standards—and much more research—are needed to provide 

precise and confident estimates of current emissions. 

 

AI IN THE OIL AND GAS INDUSTRY 
AI is widely used in the oil and gas industry.72-74 Some ways AI is used may increase GHG 

emissions; other ways may decrease emissions. On a net basis, AI appears likely to be 

increasing GHG emissions from the oil and gas industry, however no studies have rigorously 

analyzed this topic to date.  

Use of AI use in the oil and gas industry has grown rapidly in recent years. AI is being used for 

predictive maintenance, supply chain optimization, performance improvements at refineries 

and much more. AI is increasing yields from reservoirs, expanding areas where drilling is 

economic and cutting costs in exploring for oil and gas. Many industry testimonials cite the 

benefits of AI for oil and gas production.75-77  
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D. Future Greenhouse Gas (GHG) Emissions from AI 

Future GHG emissions from AI are highly uncertain. AI has the potential to increase or decrease GHG 

emissions in the years ahead, in amounts that could be small or significant. The results will depend 

on a range of policy and investment decisions. 

  

To the extent that AI is helping oil and gas companies produce more oil and gas at lower cost, 

higher GHG emissions are likely to be one result. In general, lower production costs for goods 

put downward pressure on prices for those goods, increasing consumption. More 

consumption of fossil fuels, such as oil and gas, generally increases GHG emissions.  

However, several factors complicate the analysis of AI’s impact on GHG emissions from the oil 

and gas sector.  

First, natural gas replaces coal in many places, with cheaper natural gas leading to less coal 

use. Natural gas produces roughly half the GHG emissions per unit of energy as coal when 

burned, so more natural gas use and less coal use can reduce GHG emissions—although only if 

natural gas leaks are kept to a minimum. Thus, while cheaper natural gas production due to AI 

creates significant risks of higher GHG emissions, there are scenarios in which it could do the 

opposite. The results will depend on a number of factors that vary by location. 

Second, the global oil market is not a classic competitive market. Prices are determined in 

substantial part by the decisions of key producers (including in particular the Kingdom of Saudi 

Arabia), who adjust supply with the goal of keeping prices within ranges they consider 

desirable. In the partially managed global oil market, lower production costs enabled by AI may 

lead to lower prices and greater consumption but less directly and immediately than in more 

competitive markets.  

Third, AI is also used in the oil and gas industry to help reduce GHG emissions. AI is helping to 

detect and control methane leaks, improve carbon capture processes and address supply chain 

emissions. Although these efforts appear to be smaller in scale than the use of AI to enhance 

oil and gas production, they have the potential to offset some of the GHG emissions increases 

from AI use in the industry.78-80  

The bottom-line is that use of AI in the oil and gas sector has the potential to both increase and 

decrease GHG emissions. AI appears likely to be increasing GHG emissions from the oil and gas 

sector on a net basis, but a confident assessment requires more rigorous analysis. 
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In the short-term, the surging demand for AI seems likely to increase GHG emissions.  

▪ Although major data center operators would like to buy 100% low-carbon power, new data 

center demand exceeds the supply of low-carbon power in many locations. Growing demand 

for data center use, driven in part by AI, has led to deferral of some coal plant retirements in 

the US17,81 and to construction of new natural gas plants in several locations, including Dublin 

and Phoenix.82,83  

▪ Decarbonization of the processes and industries central to AI upstream emissions—including 

manufacturing silicon chips, steel and cement—is moving slowly.84,85 

▪ Adoption of emissions-reducing applications of AI may not keep pace with increases in AI 

operational emissions and AI upstream emissions (although data on this topic are sparse). 

In the medium- to long-term, AI could increase or decrease GHG emissions. While AI operational 

emissions and AI upstream emissions may both grow, AI will also be deployed in countless ways to 

accelerate decarbonization and reduce emissions. (See Chapters 3–13 of this Roadmap.) The net 

impact of AI on GHG emissions is uncertain.  

A few studies have estimated future GHG emissions from AI.  

▪ In a 2024 report, Morgan Stanley projected that CO2 emissions from generative AI will reach 

0.2–0.3% of global power sector CO2 emissions (which is 0.1–0.15% of global CO2 emissions) in 

2027. Morgan Stanley said it expects the “net sustainability benefits from GenAI to be positive” 

(Morgan Stanley, 202438 at p. 4). 

▪ In a 2021 study, BCG experts estimated that AI could reduce 5–10% of global GHG emissions 

by 2030, based on experiences with BCG clients.63,86 

Several other studies have estimated future GHG emissions from data centers (including GHG 

emissions from data center operations unrelated to AI). 

▪ In a 2024 report, Goldman Sachs found that “carbon dioxide emissions of data centers may 

more than double between 2022 and 2030.”87  

▪ In a 2024 blog post, International Monetary Fund (IMF) experts projected that CO2 emissions 

from data centers could reach 0.5% of the global total by 2027.88 

Future GHG emission from AI will be the sum of (1) AI operational emissions, (2) AI upstream 

emissions and (3) the GHG emissions impacts of AI applications (which could be positive or negative). 

The uncertainty with respect to each of these categories is significant. We consider each of them—as 

well as future demand for AI—below. 

i. AI operational emissions 

Emissions from computing operations for AI in the years ahead will be a function of (1) 

improvements in the energy efficiency of AI hardware, (2) improvements in the energy efficiency of 

AI software, (3) rebound effects from these improvements and (4) the percentage of computing 

operations powered by new low-carbon sources. There is considerable uncertainty with respect to all 

these factors.  
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a) Hardware efficiency  

The energy efficiency of AI equipment has improved significantly in the past decade. This trend 

continues today and is likely to continue in the future. However, predicting the precise pace of 

improvements in the energy efficiency of AI equipment is challenging.  

Some recent improvements in energy efficiency have been dramatic. Between 2015 and 2021, for 

example, data center workload increased by 260% while data center energy use increased by only 

10%.15,89 

Similar improvements continue today. NVIDIA’s new Blackwell GPU trains large AI models with 

roughly 25% of the power needed for comparable tasks by older GPUs.90,91 NVIDIA reports an 

astounding 45,000x improvement in the energy efficiency of their GPUs running LLMs in the past 

eight years.91 In 2020, average power use effectiveness (PUE) across the industry was 1.58. (PUE is 

the ratio of total energy use at a data center to the energy used by its computing equipment.) Newer 

data centers have demonstrated PUEs of 1.1.61,92-96  

These improvements in energy efficiency are likely to continue. Miniaturization and architectural 

optimization will likely drive continued energy efficiency in GPUs in the years ahead.90,91,97 More 

efficient and higher-performing computational equipment, such as tensor processing units (TPUs), 

also offer the promise of continued improvements in energy efficiency.92-94 More radical design 

concepts, such as analog-AI chips, may also result in major improvements in energy efficiency.98 

Studies of PUE at data centers suggest continued energy-efficiency improvements are possible.61,92-96 

Yet predicting the pace at which the energy efficiency of AI equipment will improve is challenging. 

Hardware advances, such as new chip architectures, often follow unpredictable innovation cycles, 

making it difficult to forecast specific gains. Breakthroughs in quantum computing, neuromorphic 
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chips or AI itself could drastically improve efficiency. Supply chain disruptions or geopolitical forces 

could slow innovation. Significant energy efficiency gains in AI equipment are likely, but precise 

projections are challenging.   

b) Software efficiency  

Advances in AI models have significantly improved the energy efficiency of AI in recent years. These 

advances include development of more efficient algorithms, such as sparse models and pruning 

techniques, which reduce the number of computations required to achieve the same or better 

results. Optimization strategies like quantization and knowledge distillation have also enabled AI 

models to run more efficiently on existing hardware. As a result, AI systems now require less 

computational power and energy to perform complex tasks, reducing their overall carbon 

footprint.99,100 

Significant work is underway to further improve model architectures using these techniques and 

others.92,101 Nodal and clustering optimization could have significant impacts on the overall carbon 

intensity of compute-heavy parts of an AI model’s lifecycle. Researchers across major markets (e.g., 

the United States and China) have begun to investigate this potential, but more analysis is needed as 

new hardware becomes available.102  

As with hardware efficiency improvements, projecting the pace of change in software development 

is challenging. The development of new algorithms and optimization techniques is inherently 

uncertain, as breakthroughs in AI often come from unexpected research directions and can be 

difficult to foresee.  

The International Standards Organization (ISO) recently published a methodology for evaluating a 

software system’s “software carbon intensity (SCI).” The methodology is intended to “help software 

practitioners make better, evidence-based decisions during system design, development, and 

deployment, that will ultimately minimize carbon emissions.”103 Widespread attention to the SCI 

methodology could help reduce emissions from AI systems. 

c) Rebound effects  

In combination, the hardware and software energy advances described above offer the potential for 

significant—indeed extraordinary—improvement in the energy efficiency of AI in the years ahead. 

Whether these energy efficiency gains will have a significant impact on GHG emissions from AI is 

uncertain. 

A core challenge in projecting GHG emissions from AI is the rebound effect (sometimes called 

“Jevons Paradox”).104,105 As AI tools become more energy efficient and therefore cost less, use cases 

for AI will expand. The power demand for AI from these new use cases could offset the energy 

savings from hardware and software energy efficiency improvements in part or in whole. 

The rebound effect is a well-studied phenomenon in other contexts, including automotive fuel 

efficiency standards, where the rebound effect is estimated to offset 10–30% of a fuel efficiency 

standard’s benefits.106-108 A 2014 paper in the American Economic Journal by Lucas Davis et al. found 
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significant rebound effects in Mexican programs to replace energy inefficient air conditioners and 

refrigerators.109 

There is little research on the likely rebound effect as the energy efficiency of AI hardware and 

software improves in years ahead. Yet general trends in the industry suggest rebound effects may be 

significant. As significant energy efficiency improvements in the latest generation of GPUs were being 

announced in 2024, commercial orders for those GPUs skyrocketed and applications for new data 

center capacity continued to climb. A wide range of industry participants appear to believe that 

cheaper and more efficient computing power will open up new potential applications for AI, not cut 

back on overall power demand from the industry.39,57 

d) Low-carbon power  

The amount of GHG emissions from AI operations in the years ahead will be determined in significant 

part by the amount of low-carbon power used for these operations. 

Many large data center operators are deeply committed to using low-carbon power. Indeed the 

world’s largest data center operators—Amazon, Microsoft, Google and Meta—are among the 

world’s largest purchasers of renewable power.1,110-112 However data center operators face 

significant constraints in procuring sufficient low-carbon power. Permitting delays, inadequate 

transmission infrastructure and land-use constraints are among the major barriers.35 

These constraints complicate forecasting. The amount of GHG emissions from AI operations depends 

not just on the pace at which power demand for AI grows, but on how that power is generated. A 

data center or edge device powered by a grid with significant coal generation will emit far more 

GHGs than a data center co-located with a new low-carbon power plant. 

The indirect effects of data center operators purchasing low-carbon power are also a complicating 

factor. If the supply of low-carbon power in a region is constrained, the purchase of low-carbon 

power by a data center operator may force other electricity consumers to purchase power from 

higher-carbon sources, indirectly increasing GHG emissions. This may currently be happening in the 

eastern United States.113,114       

(Similar concerns have been raised with respect to hydrogen produced with renewable power, 

known as “green hydrogen.” The European Union and United States have both adopted rules 

requiring that green hydrogen facilities use new or additional renewable power in order to receive 

favorable regulatory or tax treatment. There are proposals that data centers be subject to similar 

additionality requirements.)115-118 
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A potential solution to the problem of indirect 

GHG emissions increases is for data center 

operators to develop new low-carbon power 

sources for new data centers. One innovative 

approach is the Clean Transition Tariff 

developed by Google and others, in which 

utility regulators establish a rate structure 

under which data centers and other large 

customers pay more for new low-carbon 

power projects using emerging clean energy 

technologies.119,120  

Another important development is the 

emergence of “carbon-aware computing,” 

which schedules intensive computing tasks 

based on the carbon intensity of the power 

available to perform the computation.121 By 

leveraging near-real-time data and models about renewable generation, a carbon-aware computing 

system can defer intensive, non-urgent AI model training tasks for time periods when renewable 

generation is abundant or curtailed. Intensive computing tasks could also be transferred to data 

centers in different locations where low-carbon electricity is available (taking into account the 

emissions associated with the data transfer).122-124 

The strong commitment of leading data center operators to buying low-carbon power will help 

minimize the growth of GHG emissions in connection with AI in the years ahead. But there are 

constraints on the ability of data center operators to buy low-carbon power. Projections of low-

carbon power’s role in AI computing operations in the years ahead should allow for a range of 

possible outcomes. 

ii. AI upstream emissions 

Upstream emissions from AI include emissions from manufacturing silicon chips, making steel and 

cement for data centers, and taking other steps necessary to build the physical infrastructure for AI 

operations. Many of these activities rely heavily on fossil fuel combustion and have significant GHG 

footprints. Future upstream emissions from AI will depend on growth in demand for AI and the pace 

at which these activities decarbonize.  

Progress in decarbonizing some of these activities has been slow. Some forms of silicon production 

have a higher carbon footprint today than 20 years ago.125 Steel and cement making are often 

considered “hard-to-abate” sectors, which are difficult to decarbonize.126 (Fortunately AI could help 

accelerate decarbonization of some of these sectors. See Chapter 5 of this Roadmap.) The prospects 

for decarbonizing many of these sectors faster than AI scales may not be good, suggesting that 

upstream GHG emissions from AI may rise in the years ahead. However much more research is 

needed to make confident projections on this topic.  
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iii. Emissions impacts of AI applications 

In the years ahead, the impacts of AI applications on GHG emissions could be positive or negative. 

Indeed, these impacts could be very positive or very negative. The range of uncertainty is enormous.  

As noted in Section C (iii) above, the phrase “impacts of AI applications on GHG emissions” is 

potentially confusing. In this context, it means how use of AI impacts GHG emissions, not including AI 

operational emissions or AI upstream emissions. For example, when a municipality uses AI tools to 

help with traffic management, how much do vehicle emissions fall? When an industrial facility uses 

AI tools in its operations, how much do emissions at that facility rise or fall? 

A few studies have attempted to project the potential emissions benefits of AI applications in the 

years ahead.  

▪ A 2023 report by BCG and Google found that “AI has the potential to unlock insights that could 

help mitigate 5–10% of GHG emissions by 2030”127 

▪ A 2021 Capgeminii study found that executives interviewed believed AI could reduce overall 

GHG emissions 16% by 2024–202664  

▪ A 2019 report by PricewaterhouseCoopers (PwC)/Microsoft found that AI could reduce global 

GHG emissions by 1.5–4% by 2030 compared to business-as-usual pathways 

However, the literature on this topic is sparse, and challenges in making projections are considerable. 

Data with respect to the impacts of AI applications on GHG emissions are limited. Evaluating the 

benefits of AI applications involves considering a counterfactual—what would happen in the same 

setting without AI? Such counterfactuals are often difficult to define with rigor. The potential for 

rebound effects from efficiencies introduced by AI creates analytic difficulties. Finally, AI is a 

transformational technology at early stages of development. Confidently predicting its capabilities or 

how it will be deployed beyond the short-term is difficult at best.  

The dozens of AI applications discussed in this roadmap highlight the enormous potential for AI 

applications to reduce GHG emissions in the years and decades ahead. Some of these reductions are 

likely to be incremental—gains of perhaps 10–20% through improved operations. Other reductions 

could be transformational—such as dramatically reducing GHG emissions by discovering novel 

materials. At the same time, using AI in carbon-intensive industries could significantly increase 

emissions, if AI helps carbon-emitting activities become cheaper or more competitive. 

iv. Demand for AI  

The pace of AI demand growth will help determine future GHG emissions in all three of the 

categories discussed above (AI operational emissions, AI upstream emissions and the emissions 

impacts of AI application). Demand for AI has been growing quickly for the past decade and is surging 

today. Private sector investment in AI grew 18x between 2013 and 2021,128 and private sector 

demand for AI more than doubled from 2017 to 2022.129 With the explosion of interest in AI 

following the release of ChatGPT in November 2022, demand for AI began to grow even faster. Many 

forecasters predict that AI will grow dramatically in the years ahead—at compound annual growth 

rates in the range of 30–35% or more.11,53-55 
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However, the pace at which demand for AI grows in the years and decades ahead is very uncertain. 

Some analysts question whether AI will deliver productivity benefits consistent with the enormous 

current investments in the technology,130 suggesting that projections of rapid demand growth could 

be overstated. Regulatory frameworks, public attitudes, economic conditions, technology 

development and geopolitical trends will all shape demand growth. AI is a transformational, general-

use technology at an early stage of adoption in most sectors. High growth rates are likely, but the 

range of uncertainty with respect to these rates is considerable. 

E. Conclusion 

AI’s impacts on GHG emissions could be positive or negative, both today and in the years ahead. 

Estimating with precision is challenging due to limited data and other challenges.4 

However, there is significant potential for the overall GHG benefits of AI to exceed its costs. This 

could happen if (1) some of the emissions-reducing applications of AI discussed in this Roadmap 

deliver significant results and (2) AI operational emissions and AI upstream emissions grow slowly or 

fall in the years ahead. However, the opposite result is possible as well: AI applications could fail to 

reduce GHG emissions and AI operational emissions and AI upstream emissions could climb in the 

years ahead.  

Supportive policies and commitment on the part of key stakeholders are needed to realize the full 

potential of AI to reduce GHG emissions. 
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F. Recommendations 

1. AI developers, data center owners, energy experts, GHG emissions experts and standards 

organizations should establish robust methodologies and standards for reporting energy use and 

GHG emissions across the AI value chain. 

2. AI developers and data center owners should report energy use and GHG emissions associated 

with their AI workloads. 

3. Governments should adopt regulations that require AI developers and data centers owners to 

report their energy use and GHG emissions. 

4.  AI developers should take steps to reduce the carbon intensity of their models, using the ISO’s 

methodology for evaluating their models’ Software Carbon Intensity (SCI).103 

5. Data center owners should prioritize adoption of energy-efficient hardware for AI operations and 

optimize AI workloads based on carbon-aware computing strategies.  

6. Governments should promote and support policies that enable and incentivize data center 

owners to purchase low-carbon energy, including supporting new low-carbon power generation 

and grid expansion in regions with high concentrations of AI-driven data center growth. 

7. National governments, AI developers, data center owners and philanthropies should fund 

researchers to develop a set of scenarios to quantify the effects that AI could have on greenhouse 

gas emissions under a range of assumptions. These scenarios should combine quantitative 

models with expert consultations, rigorously exploring a range of possible futures. The 

Intergovernmental Panel on Climate Change (IPCC) should include these scenarios in a special 

report on AI to be released within two years.5  

8. All stakeholders should review and consider the dozens of other recommendations throughout 

this Roadmap to help reduce GHG emissions using AI tools. 
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DATA CENTER WATER USE 
Julio Friedmann 

Most modern data centers use water to cool the computer servers, which generate huge 

volumes of heat. The servers preferred by AI applications generate even more heat than 

standard servers and therefore use more water as a coolant. In addition, generating electricity 

for data centers often consumes water (Figure 15.5-1). Since many new data centers are being 

built in water-stressed areas, minimizing water usage for data centers is a priority in many 

locations. 

Figure 15.5-1. Major sources of water consumption associated with data center operation and AI.1 

Magnitude 

Data on the magnitude of water use by data centers are limited, as are projections about near-

term consumption. Bluefield Research found that data centers consumed 292 million gallons 

per day (roughly 1.1 million m3/d) globally in 2022 (Figure 15.5-2). They project global use will 

increase to roughly 450 million gallons/d (~1.7 million m3/d)—a 5.5% annual increase.1 (Only a 

portion of data center workloads, and therefore water use, is for AI applications.) In a 2023 

paper, Li et al. project greater water consumption by 2027 (4.2–6.6 million m3/d, depending 

largely on the cooling requirements for power systems and estimated growth rate).2 
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Figure 15.5-2. Global water use for data centers. Source: JP Morgan Chase, based on original data from 

Bluefield Research1 

By way of comparison: 

▪ The agricultural irrigation load of just the United States alone is ~140 billion gal/d,3 or 

300 times more than the 450 million gal/d forecast for global data center water use in 

2030. 

▪ The Amazon discharges ~4800 billion gal/d (almost 5 trillion/day),4 which is more than 

10,000 times larger than the projected 2030 global data center water use. 

Although 0.001% of one river could provide all the world’s water consumption for all data 

centers, ultimately water is managed and consumed regionally. In water scarce regions, such 

as the Middle East or the western United States, local impacts could be substantial and 

unmanaged growth of data centers could lead to subsidence, local water shortages, and 

competition between agriculture and AI. In a 2021 paper on US data centers, Siddik et al. 

found that “one-fifth of data center servers’ direct water footprint comes from moderately to 

highly water stressed watersheds, while nearly half of servers are fully or partially powered by 

power plants located within water stressed regions.”5 

Options and possible solutions 

Many providers and operators of data centers are considering ways to reduce water 

consumption or water stress. For example, the computer maker Lenovo has begun to market a 

novel cooling system that significantly decreases water consumption.6 Data-center builder and 

operator Nautilus Data Technologies typically operates on closed-loop cooling systems in sea 

water,7 consuming no fresh water at all. In addition, some operators have begun exploring 

opportunities to use waste heat rather than rejecting it for cooling, including using it for 

district heating and running industrial processes (e.g., direct air capture).8 And, of course, AI 

can be directly harnessed to optimize for minimal water consumption.  
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Policy options include mandatory water usage reporting, water efficiency standards, incentives 

for sustainable practices, water pricing mechanisms and water recycling mandates. (See 

Chapter 16 of this Roadmap.) 

Data center water consumption will not be a major concern in many places but could be a 

significant concern in other locations. Water is a scarce resource and should be managed well 

in all circumstances. More data collection and research are needed. 

Recommendations 

1. Data center operators and governments should collect and share data on water consumption to

understand potential issues and determine risk. More and better data are needed to identify

potential risks in terms of the magnitude and acuteness of community or environmental stresses.

2. Data center operators should explore potential pathways to reduce water consumption and

mitigate risks. There are many promising, practical ways to manage water use and reduce total

water consumption. The economic and technical viability of these options will vary by region.

Especially in water stressed areas, data center operators should begin to track, review and

explore options to responsibly and reasonably mitigate water consumption stresses and concerns.

3. National and local governments should consider policy options, including mandatory water usage

reporting, water efficiency standards, incentives for sustainable practices, water pricing

mechanisms and water recycling mandates.
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Governments play an important role in 

the use of artificial intelligence (AI) for 

climate change mitigation. Governments 

collect environmental data used to train 

AI models, fund clean energy research 

programs that use AI tools, establish 

policies that shape the use of AI in the 

power and transport sectors, and 

facilitate international cooperation on AI 

for climate action. Other examples 

abound. 

Governments are playing an increasing 

role in addressing risks from AI, including 

content risks (such as bias, invasions of 

privacy and misinformation/disinformation), resource risks (such as increased greenhouse gas (GHG) 

emissions, strains on the power grid and water stress) and safety/security risks. These risks may 

affect the use of AI for climate change mitigation, diminishing the impact of AI tools designed to help 

reduce greenhouse gas emissions and/or undermining public trust in AI more broadly. 

These policies and programs have important impacts. Yet governments could do much more, using 

their convening powers, vast spending, regulatory authorities and other tools to speed and steer the 

use of AI for climate change mitigation. 

This chapter explores government’s role in AI for climate change mitigation. After a background 

section on government AI policies broadly, we pose two broad questions: 

1. What can governments do to promote the use of AI for climate change mitigation?

2. What can governments do to address risks related to the use of AI for climate mitigation.

We conclude with recommendations. 

A. General AI Policies

Government policies with respect to AI are evolving rapidly. Policymakers around the world are 

considering a range of AI topics, including liability rules, labeling requirements, intellectual property 

protections, data privacy restrictions, workforce training programs, security and safety standards and 

data sovereignty issues. 

AI first began to receive widespread attention from policymakers during the latter part of the 2010s, 

due in part to the growing capabilities of AI models and emergence of applications such as facial 

recognition and autonomous vehicles. The release of ChatGPT in fall 2022 focused extraordinary 

public attention on AI, with rapid recognition of AI’s revolutionary potential and serious risks. This 

recognition has led to unprecedented interest in AI from policymakers. Important recent policy 

developments include: 

European Parliament -- Strasbourg, France 
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▪ the European Union’s Artificial Intelligence Act (May 2024)1; 

▪ the Biden administration’s Executive Order on the Safe, Secure, and Trustworthy Development 

and Use of Artificial Intelligence (October 2023)2;  

▪  the G7 Hiroshima Process International Guiding Principles (October 2023)3 and 

▪ the Shanghai Declaration on Global AI Governance (July 2024).4 

The text box at the end of this chapter summarizes recent AI policy developments in key jurisdictions 

around the world.  

AI policies around the world vary widely, reflecting different political cultures. Europe’s approach to 

regulating digital issues (including AI) has been called "rights-driven," emphasizing privacy, data 

protection and ethical standards; the US approach has been called "market-driven," emphasizing 

innovation with minimal regulatory constraints; and China's approach has been called "state-driven,” 

emphasizing government oversight and control to help achieve national security and economic 

objectives. (The terms are from Anu Bradford’s Digital Empires (2023).)5  

Although government policies with respect to AI are evolving rapidly, those policies tend to change 

much more slowly than AI technologies themselves. Government institutions in many countries tend 

to move slowly, and many policy makers lack basic familiarity with AI. Finding ways for government 

policies to respond to fast-moving developments in AI is a challenge.6,7 

Still, government policies can play an important role in shaping AI for positive social outcomes. 

Governments can, for example, incentivize development of AI technologies that promote public 

goods by offering innovators grants or tax breaks. Governments can adopt regulations to prevent 

premature deployment of AI in mission-critical settings, which poses privacy and security risks. By 

setting clear ethical standards and requiring transparency in AI development, governments can 

mitigate biases and discrimination that might arise from poorly designed AI systems. 

For AI to achieve its full potential in benefiting society, key stakeholders must trust AI systems where 

appropriate and also critically evaluate their strengths and weaknesses. Yet the varying quality of AI 

systems, coupled with concerns about job displacement, privacy, algorithmic bias and energy use, 

have led to varying levels of trust and willingness to use AI-based systems. 

Governments can play a pivotal role in promoting trust in well-functioning AI systems and a 

questioning attitude about AI more broadly. By setting standards to minimize risks, governments can 

enhance the trustworthiness of AI systems. By implementing transparency measures, governments 

can help foster public understanding of AI. Governments can both promote open-source models, 

helping mitigate concerns about "black box" algorithms, and set transparency standards for closed-

source models, allowing the public to scrutinize the models’ training data, identify potential biases 

and improve the models’ performance.  

At the G7 Summit in June 2024, the heads of state held a “Special Session on Artificial Intelligence.” 

Pope Francis delivered remarks that concluded with the statement “It is up to everyone to make 

good use of [artificial intelligence], but the onus is on politics to create the conditions for such good 

use to be possible and fruitful.”8 
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B. Realizing AI’s Potential for Climate Mitigation 

AI is already contributing significantly to climate mitigation and has the potential to contribute much 

more. Today, for example, AI algorithms play a central role in monitoring methane emissions and 

help increase productivity of solar and wind power plants. Large language models (LLMs) help 

summarize and interpret climate-related documents from governments, financial institutions and 

others.9 In the years ahead, AI could accelerate discovery of new materials for batteries and biofuels, 

dramatically increase the capacity of transmission lines, reduce emissions from traffic congestion and 

much more.10,11 (Chapters 3–13 of this roadmap explore these topics in greater detail.)  

As opportunities to use AI for climate mitigation grow in the years ahead, the role of governments 

will be important. Some AI projects will have emissions reductions benefits but little, if any, near-

term commercial return, requiring governments to help move the projects forward. Other AI projects 

will have commercial returns but will not be designed to achieve optimal climate change benefits. 

Investing in projects to help maximize social benefits (such as those related to climate change) is a 

classic and important governmental function.  

Realizing AI’s full potential to contribute to climate mitigation will not be easy. Available, accessible, 

high-quality and interoperable data are essential. So are people with the skills to develop AI tools and 

the vision to identify the many ways AI can help accelerate decarbonization. Computing power is 

needed to train and run AI models, institutions must adapt to transformational new technologies, 

and funding is required for all this work. Government policies could help overcome barriers in all 

these areas.  

i. Data 

Data are essential for AI models. Complete, 

representative and reliable data provide a 

foundation for models that can support and 

accelerate the transition to net-zero 

emissions. Partial, unrepresentative and 

unreliable data produce bad models that 

could complicate or slow the transition. 

Unavailable or inaccessible data (especially 

from the global south), biased data and the 

lack of interoperable data can all cause 

problems. 

Governments can play an important role in 

addressing these challenges in at least three 

areas: collecting data, standardizing data 

and making it interoperable, and addressing 

the digital divide.  

 

U.S. Capitol -- Washington, DC, USA 
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a) Data collection 

Governments collect significant amounts of data related to climate change. The European Space 

Agency (ESA), the US National Aeronautics and Space Administration (NASA), the Japan 

Meteorological Agency and the China Meteorological Administration, for example, all collect large 

amounts of historical and current weather data. Several government programs, including ESA’s 

Climate Change Initiative and NASA’s Climate Data Service, specifically focus on ways that weather 

data can contribute to understanding climate change.  

Government agencies collect other types of data related to climate mitigation as well. NASA collects 

data on forest loss.12 The Japan Meteorological Agency collects data on sea-level rise.13 Hundreds of 

cities around the world collect traffic data.14 Most national governments—as well as the World Bank, 

the International Monetary Fund (IMF) and the Organization for Economic Co-operation and 

Development (OECD)—collect economic data.15 The UN Climate Framework Convention on Climate 

Change (UNFCCC), UN Environment Program (UNEP),UN Office for Disaster Risk Reduction (UNDRR) 

and others collect data on countries’ GHG emissions and climate action. 

In addition, governments support collection of climate-related data sets by others. Many universities, 

for example, rely on government grants for data collection and analysis with respect to climate 

change. The United States, European Union, Japanese and Chinese governments, among others, 

provide extensive grant funding for climate change and clean-energy research, which often involves 

data collection.16-18 

More and better data could contribute to climate change mitigation. Priorities include LiDAR data for 

topography, flood maps for urban planning, and more frequent and granular economic and 

emissions data. (Climate Change AI has published a Dataset Wishlist that includes considerable detail 

on data sets that would be helpful.19) Further, some of the currently available data suffer from 

quality problems and biases.  

Governments play an important role in helping address these gaps. Government policies can include: 

▪ Collecting, curating and hosting climate-related data; 

▪ Funding the collection, curation and hosting of climate-related data by others with grants, tax 

incentives or other fiscal tools; 

▪ Developing governance mechanisms for climate-related data on topics such as IP rights, legacy 

data, protection from deletion, data provenance and interoperability;  

▪ Convening task forces or similar groups to encourage standardization and interoperability of 

climate-related data and 

▪ Adopting regulations that encourage or require disclosure of climate-related data. 

b) Data standardization and interoperability 

Governments play a growing role in promoting standardization and interoperability of data for 

climate change mitigation. Current initiatives focused specifically on climate change and energy data 

include:  
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▪ The ESA Climate Change Initiative’s Data Standards, which set forth requirements “to ensure 

consistency, harmonization and ease of use” of varied climate data sets20 

▪ The UK Energy Data Task Force, established in 2019 as a collaboration between government, 

industry and academia, which develops standards and best practices with respect to data 

quality, interoperability and data sharing protocols in the energy sector.21 

Broader data initiatives with a climate change component include: 

▪ The German Standardization Roadmap, which establishes “data infrastructure and data quality 

standards for the development and validation of AI systems,” specifically noting that “[data] 

standardization contributes to Germany's transformation into a climate-neutral industrialized 

country”22;  

▪ Global Open Data for Agriculture and Nutrition (GODAN), which brings together governments, 

organizations and individuals to advocate for data standardization, sharing and 

interoperability23; 

▪ The Open Government Partnership, a government–civil society collaboration aimed at 

enhancing data transparency, civic participation and public accountability, including with 

respect to climate-related data and  

▪ The European Telecommunications Standards Institute (ETSI), a European standard-setting 

organization supported in part by the European Union that sets Internet of Things (IoT) 

standards, including those for “achieving the green and digital transformation.”24 

Governments could do more to help increase standardization and interoperability of climate data. 

Steps governments could take include: 

▪ Recommending stakeholders follow data management guidelines, such as the “FAIR Guiding 

Principles” (Findability, Accessibility, Interoperability and Reusability)25;  

▪ Imposing data standardization and harmonization requirements in connection with 

government-funded research and development (R&D) and tax incentives; 

▪ Enacting regulations to ensure transparency, including access to metadata and core data;  

▪ Providing funding for data standardization organizations and activities, including for developing 

standards and raising awareness and  

▪ Fostering collaboration and knowledge-sharing among stakeholders, thereby promoting 

standardization and harmonization of climate-related data.  

Government participation in standardization bodies and initiatives focused on data for climate 

mitigation can be especially helpful. By joining international organizations—such as the International 

Standards Organization (ISO)—and supporting industry-specific groups, governments contribute to 

development of data standards, protocols and best practices. Governments can also provide 

resources, expertise and endorsements to encourage adoption of these standards by industries and 

organizations.24 
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c) Addressing the digital divide 

Finally, governments can take steps to address the global digital divide. Today, more than 2.5 billion 

people globally are not connected to the Internet, and roughly half the world’s population lacks 

access to high-speed broadband.26 That creates two problems with respect to using AI for climate 

change mitigation. First, the lack of digital connectivity significantly limits data creation on a range of 

topics relevant to climate change mitigation, including energy usage, travel patterns and more.27 

Second, the lack of digital connectivity prevents businesses and others from accessing AI tools that 

could help cut emissions.(Of course, connecting people to high-speed Internet has wide-ranging 

economic and social benefits and should be pursued for many reasons beyond those related to 

climate change mitigation.) 

Some intergovernmental bodies and government programs currently work to address the digital 

divide. These programs include: 

▪ The International Telecommunication Union, a UN agency whose mission is “connecting the 

world”28 

▪ The World Bank’s Digital Development Partnership, which works to “to leverage digital 

technologies and data as a means to accelerate green, inclusive and resilient social and 

economic development”29 

▪ The US Infrastructure Investment and Jobs Act (IIJA) of 2021, which allocated $42 billion to 

close the digital divide in the US by improving broadband access.30 

Additional steps governments can take include providing more funding for broadband infrastructure 

in remote and underserved areas; establishing public WiFi hotspots in community centers, libraries 

and schools; launching digital literacy training programs to teach basic digital skills; and sharing best 

practices with other governments concerning policies and programs in this area.31 

ii. People 

Developing AI tools for climate change mitigation requires a diverse team of professionals. Data 

scientists, climate scientists, data engineers, software engineers, designers, product managers, 

climate policy experts and others may all have roles. These professionals must work together, often 

bridging differences in professional backgrounds and approach. 

One of the principal barriers to using AI for climate change mitigation is a lack of trained personnel. 

Trained data scientists and engineers are in short supply. (LinkedIn data suggest a 74% increase in 

the demand for AI specialists in the past four years.32,33) In addition, many professionals working on 

climate issues lack basic familiarity with AI. They may miss opportunities for AI to contribute 

significantly to their work and/or be unable to utilize AI tools for maximum advantage. 

Governments could help overcome these barriers in several ways.33 

First, governments could launch skills-development programs for professionals working on AI and 

climate issues. Some programs would target professionals with climate expertise, teaching them 

about AI; other programs would target professionals with AI expertise, teaching them about climate. 
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The programs could be workshops, short lecture series or full courses. Government agencies could 

run such programs or fund others to do so. 

Second, governments could launch AI-climate fellowship programs. The programs would identify 

promising university graduates (perhaps focusing on those from developing countries) and fund 

residential fellowships to study topics related to AI and climate change. Governments could explore 

partnerships with leading foundations for these programs.34-36 

Third, governments could pay for the education of university students learning skills related to using 

AI for climate mitigation. In some countries, paying the tuition and living expenses of university 

students developing such skills could help significantly increase enrollment in relevant courses.  

Fourth, governments could integrate AI and climate change–related topics into educational curricula 

at all levels. AI skills rest on a foundation of science, technology, engineering and math (STEM) 

education, with a curriculum that includes quantitative reasoning, logic, computer programming and 

related topics. Governments could commit to strengthening STEM education as a platform for 

developing a new generation prepared for AI-specific education/training, with particular applications 

related to climate change.  

Fifth, government agencies working 

on climate mitigation could 

systematically review the capabilities 

of their own staff with respect to AI 

and launch programs to ensure their 

staff remain up-to-date regarding AI 

developments. This could be 

especially beneficial for grant 

managers, helping them ensure 

government funds are disbursed with 

an up-to-date understanding of AI’s 

potential and attention to AI-related 

data management practices. 

Sixth, governments could commit 

extra funds to recruiting and 

retaining skilled AI professionals. AI specialists often command high salaries in the private sector, 

making it challenging for government agencies to hire them. Providing government human resources 

(HR) departments with the authority and resources to compete (at least partially) with the private 

sector for the best AI professionals could deliver significant benefits.  

Finally, as a core feature of education and training programs for AI and climate change, governments 

could pay attention to the global digital divide. As noted, billions of people globally currently lack 

Internet connectivity. Education and training programs focusing on basic digital skills in many regions 

will contribute enormously to a workforce able to fully utilize AI for climate change mitigation over 

the long-term.  

 

Great Hall of the People -- Beijing, China 
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iii. Computing power 

AI projects require computing power—for training models, running models and storing data. Lack of 

adequate computing power can be a barrier to AI projects related to climate change, especially in 

training foundation models that require enormous compute. Governments can take several steps to 

address this challenge. 

Governments could help increase the availability of computing power for climate change–related AI 

projects by (1) investing in its own computing infrastructure; (2) making its computing infrastructure 

available for projects that use AI for climate change mitigation and (3) funding research 

organizations, civil society and private sector companies working on climate change–related projects 

to use computing infrastructure owned by others. 

Governments already play an important role in this regard. Within the US Department of Energy 

(DOE), for example, some of the world’s most powerful supercomputers support a global network of 

partners as part of the Earth System Grid Federation (above). In connection with this project, Oak 

Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL) and other US DOE 

National Labs provide computational services for climate change modeling and analysis—including 

simulations and projections—in part using AI tools.37-39 

Government investment could take several forms. Governments could invest in their own computing 

infrastructure, provide grants for others to develop such infrastructure and/or provide tax incentives 

to encourage development. The approaches that work best will vary from country to country.  

One powerful tool could be to (1) solicit proposals for projects that use AI for climate change 

mitigation and then (2) make computing power available without cost for the proposals that offer 

the greatest potential benefits. Microsoft AI for Earth and other private companies already do this40; 

governments could play an important role as demand for computing time increases in the years 

ahead. Government high-performance computing (HPC) facilities could expand their review process 

and reviewer pool to include more AI expertise and emphasize allocating HPC time for AI-enabled 

research with direct impacts on climate mitigation.41 

iv. Cost 

Cost is a cross-cutting barrier, relevant to each of the three barriers discussed above (data, people 

and computing power). Each of these three barriers could be mostly addressed, at least in the 

medium-term, with greater funding. 

As noted above, many climate change–related AI projects will have little if any near-term commercial 

return, making government funding essential. Many advances in using AI for climate mitigation will 

depend on government funding in the years ahead.  

A key question will be how such government funding for AI will be allocated. Some governments may 

focus funding on new and innovative AI methods, including open foundational models. Other 

governments may prioritize GHG reductions, which will often be achievable with existing AI methods. 

The allocation of funding between these two types of projects—those investigating new AI methods 

and those targeting maximum emission reduction—could have a significant impact.42 
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Governments also have an important role in ensuring that electric utilities that use AI tools to reduce 

emissions receive compensation for such projects. Electric utilities that are paid a regulated return 

based on their capital spending may lack the incentive to invest in AI tools that reduce emissions and 

costs. Unless regulators approve rules 

that provide compensation for the value 

created by AI, electric utilities may not 

pursue emissions-reducing projects, such 

as those for demand response or vehicle-

grid integration.43 

v. Institutions 

Institutional structures will play a 

significant role in realizing AI’s potential 

for climate mitigation.  

Some recent history provides useful 

background. The modern computing era 

began in the 1960s, as mainframe 

computers became increasingly central to 

many business functions. But the term “Chief Information Officer” was not coined until 1981. Until 

the 1980s, few large organizations had executives solely responsible for information and 

communications technologies in their top leadership teams.44 

In a similar manner, despite significant recent advances in AI, many institutions are only beginning to 

incorporate AI into their organization and mission. They could do so in a number of ways. For 

government agencies with responsibility for climate change mitigation, possible steps include:   

▪ creating an Artificial Intelligence Office, with responsibility for assessing opportunities, barriers 

and risks with respect to AI in all aspects of the agency’s mission;45 

▪ hiring a Special Advisor responsible for advising the head of the agency on all matters related 

to AI; 

▪ creating a unit to improve AI skills throughout the agency; and/or 

▪ launching a strategic planning process to consider ways that topics related to AI can best be 

addressed within the agency on an ongoing basis. 

Several governments are taking steps in these directions. In March 2024, for example, US Vice 

President Kamala Harris announced that all US government agencies would be required to name a 

chief AI officer.46  

Governments can also create or help create public-private partnerships or other stakeholder groups, 

bringing together diverse groups to discuss and implement opportunities for using AI for climate 

mitigation. Governments could help fund such public-private partnerships and/or provide the 

convening power to help assemble and sustain such groups. 

 

National Diet Building – Tokyo, Japan 
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Finally, intergovernmental organizations can play an important role in AI for climate mitigation. The 

International Energy Agency (IEA) produces leading research and convenes important meetings on 

AI/energy issues.47-49 The U.N. Framework Convention on Climate Change has an Initiative on AI for 

Climate Action.50 The Clean Energy Ministerial and Mission Innovation are launching an initiative on 

using AI to promote clean energy. The World Meteorological Organization (WMO) is using AI to 

improve understanding of Earth systems.51 These and other programs can help support the use of AI 

for climate mitigation. 

C. Managing Risks 

Risks related to using AI include content risks (such as bias, invasions of privacy and 

misinformation/disinformation), resource risks (such as increased GHG emissions, strains on the 

power grid and water stress) and safety/security risks.  

These risks arise from using AI generally, not from using AI for climate change mitigation in particular. 

Yet, there are two reasons why addressing these risks is important to successfully using AI for climate 

change mitigation. First, failure to address these risks could undermine public trust and confidence in 

AI, making adoption of AI for climate change mitigation less likely. Second, failure to address these 

risks could diminish the impact of AI tools designed to help mitigate climate change.  

In this section we discuss risks of using AI, government policies that could help address these risks 

and steps taken by governments to date.  

i. Bias 

Unrepresentative data, poorly designed algorithms and other factors create risks of bias in many AI 

applications. These biases can distort AI recommendations on a range of topics, including (for 

example) on infrastructure siting. An AI algorithm trained on historical data might suggest that new 

polluting infrastructure be located in low-income communities and new electric vehicle (EV) charging 

infrastructure be located in high-income communities because that is where such infrastructure is 

found in existing data sets. AI can produce poor or inaccurate results when developers fail to realize 

that data collected from one socioeconomic group is not representative of patterns in another 

socioeconomic group.  

These biases often result from uneven data availability across regions. For example, LLMs are trained 

on vast amounts of data, but these data are overwhelmingly from the Global North and primarily in 

English—the prevalent language on the Internet. This imbalance can lead to LLMs that are biased 

toward Western perspectives and struggle to understand or respond appropriately to languages and 

cultures from the global south.27 

Governments can address risks of bias with a range of tools: 

▪ Data collection standards. Governments could set data collection standards for AI models, 

highlighting the importance of diverse and representative data sets. These standards could be 

binding or non-binding. 
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▪ Transparency. Similarly, governments could set standards with respect to transparency in 

developing AI models, giving all stakeholders a better opportunity to identify possible biases. 

These standards could be binding or non-binding. For example, disclosure requirements could 

be established for training and evaluation data sets. 

▪ Third-party audits. Governments could recommend or require that AI developers retain third 

party auditors to assess any bias in their products and establish accreditation standards for 

organizations conducting such audits. 

▪ Legal accountability. Governments could establish legal frameworks that hold entities 

accountable for biased or discriminatory outcomes resulting from AI applications. 

▪ Convening. Governments could convene diverse stakeholders to evaluate AI products, bringing 

people with a wide range of views together and making sure all are heard. 

▪ Education and training. Governments could offer AI developers, data scientists and other 

stakeholders training programs on the importance of bias recognition and mitigation 

▪ Research and development (R&D). Governments could allocate funding for research into 

reducing bias in AI generally and for climate mitigation. 

There is emerging regulation attempting to address bias in AI. For example, the US Federal Trade 

Commission (FTC) and Equal Employment Opportunity Commission have introduced initiatives aimed 

at establishing guardrails around AI and its potential impact on the constituencies those agencies are 

charged with protecting.52 The FTC has already taken enforcement action against using biased data.53 

The EU’s AI Act specifically addresses bias, requiring data governance and management practices for 

AI systems classified as high-risk—including human oversight and risk management practices to 

mitigate likely risks to fundamental rights. The Act does not prevent deploying biased systems.54 

ii. Privacy 

Privacy risks related to using AI for climate mitigation include surveillance, personal identification and 

data sharing. First, increasing use of sensors, drones and IoT devices to monitor environmental 

change and human behaviors related to carbon emissions creates a risk that some data could be 

used for unauthorized surveillance. Second, when data from multiple sources are aggregated (such 

as smart meter data and property records), individuals who were previously anonymous in isolated 

datasets could become identifiable. Third, data on energy consumption patterns or other topics 

could be shared with third parties, either by the host of that data or as the result of a cyberattack. 

Governments can address these risks with policies including: 

▪ Data protection regulations. Governments could enact laws requiring organizations to ensure 

the privacy and protection of personal data, provide transparency on how data are processed 

and give individual’s rights to access, correct and delete their data. The EU’s General Data 

Protection Regulation (GDPR) is widely considered to be the strongest such law passed globally 

to date.55 
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▪ Privacy by design for all AI models. Governments could require that privacy considerations be 

expressly integrated in the design of AI models throughout development and during use. 

▪ Cybersecurity standards. Governments could mandate cybersecurity measures for 

organizations that collect, process or store climate-related data. 

▪ Anonymization. Governments could require use of techniques that render personal data less 

identifiable. 

▪ Oversight and governance bodies. Governments could establish independent oversight boards 

or agencies responsible for monitoring and ensuring privacy protections related to AI and 

climate mitigation. 

Some of these policies are already being incorporated into national laws:  

▪ Some data protection law frameworks, while not addressing AI specifically, lay a foundation for 

managing AI-related risks. The EU General Data Protection Regulation is an example. 

▪ AI-specific privacy regulation is emerging in multiple countries. In some countries, this is done 

by integrating explicit AI provisions into existing general data protection measures. Examples 

include Brazil’s General Data Protection Law (LGPD), South Africa’s Protection of Personal 

Information Act (POPIA) and India’s draft Personal Data Protection Bill. 

▪  In addition, privacy provisions can be introduced into AI regulation, such as integrating data 

protection measures into the EU AI Act.  

iii. Misinformation/disinformation 

Misinformation is false or misleading information. Disinformation is false or misleading information 

spread deliberately to deceive or cause harm. (Critically, misinformation or disinformation can 

include the omission of information necessary for statements to be complete and accurate.)56  

AI enables creation and dissemination of misinformation and disinformation at an unprecedented 

scale. Advanced AI technologies can generate fake text, images and videos that are difficult to 

distinguish from authentic content. These tools can be exploited to spread false narratives, 

manipulate public opinion and undermine trust in legitimate sources of information. 

AI contributes to misinformation and disinformation in other ways as well. AI-driven algorithms on 

social media platforms exacerbate the spread of misinformation by prioritizing content that 

maximizes user engagement without regard to whether the information is authentic. This creates 

echo chambers where users are exposed primarily to information that confirms their existing beliefs, 

further entrenching misinformation and making it harder to correct false narratives. In addition, 

incomplete data or flawed weights in AI models can lead to “algorithmic bias,” causing AI tools to 

spread false or misleading information.27   

AI-driven misinformation and disinformation is a potentially serious problem with respect to climate 

change mitigation. Misinformation and disinformation can erode public confidence in scientific 

judgments that are at the core of effective climate change policies, create false or polarizing 
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narratives that undercut public support for climate change policies and create significant 

impediments to sustaining climate change policies over the medium- to long-term.57-59   

There are no easy solutions to AI-driven misinformation and disinformation. Having governments 

serve as the arbiter of truth creates significant risks—arguably greater than allowing AI-based 

misinformation and disinformation to proceed unchecked.60  

Policies designed to mitigate AI-driven misinformation and disinformation include: 

▪ Labeling requirements for manipulated text, images or video; 

▪ Requirements that media platforms provide prompts or warnings suggesting that users 

consider the credibility of content before sharing or engaging with it;  

▪ Media literacy education in schools, equipping students with skills to critically evaluate 

information; 

▪ Government-led and independent watchdog fact-checking organizations and 

▪ Prohibitions on content that governments consider to be misinformation or disinformation.61 

Governments have begun to adopt policies in this area. The EU AI Act requires AI systems intended 

to inform the public on a matter of public interest to disclose when text has been manipulated, 

subject to some exceptions, including when human editors have reviewed and taken responsibility 

for the content.62 Several countries have established government-funded fact-checking entities to 

combat misinformation, including AFP in France63 and Singapore’s Fact Check Media.64 The G7 has 

established a Rapid Response Mechanism on Disinformation.65 The Chinese government prohibits 

dissemination of information it considers to be false or misleading, with initiatives that focus on AI-

driven content in particular.66,67 (Strong disagreements between the Chinese government and many 

Western governments on what constitutes false or misleading information underscores the 

challenges of government regulation on this topic.) 

iv. Greenhouse gas (GHG) emissions 

At present, GHG emissions from AI operations are less than 1% of total GHG emissions—and perhaps 

much less.68,69 Yet as the use of AI grows in the years ahead, GHG emissions from AI operations could 

increase significantly. (This topic is explored in detail in Chapter 15 of the Roadmap.) 

A number of policies can help limit growth in GHG emissions from AI operations in the years ahead. 

Those include the following: 

▪ Research & development (R&D). Governments could invest in R&D on energy-efficient AI 

algorithms and hardware. That could include research on methods that require less data or 

computational power for training AI models, such as few-shot learning or transfer learning. 

▪ Low-carbon data centers. Governments can promote data centers that emit little or no carbon 

dioxide (CO2) through a range of measures, including (1) tax incentives or subsidies for data 

centers powered with zero-carbon electricity (renewables, nuclear or fossil generation with 

carbon capture), (2) regulations requiring data centers to use a certain percentage of zero-



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 16: Government Policy - 16-15 

  

 

carbon power, (3) guidelines and incentives for energy-efficient data centers and (4) measures 

to increase supply of clean electricity (such as accelerated permitting). 

▪ Disclosures. Governments could require AI companies to disclose GHG emissions associated 

with their operations on a full life-cycle basis. Disclosure requirements can apply to model 

cards (fact sheets that include information about how models are trained) and AI applications.  

▪ Government procurement. Governments can prioritize AI systems with low GHG emissions 

when procuring AI solutions for their own use.  

Recent legislation on these topics includes Germany’s Energy Efficiency Act of 2023, which  requires 

data centers to use 50% renewable energy by early 2024, rising to 100% by 2027.70 In 2024, the EU 

Commission introduced a new regulatory framework mandating sustainability reporting for data 

centers consuming 0.5 MW or more. Beginning in 2026, operators must disclose total electricity 

consumption and the proportion sourced from renewable energy, including on-site generation and 

grid-supplied renewable energy backed by Guarantees of Origin.71,72 

In the United States, Senator Ed Markey and several co-sponsors introduced the "Artificial 

Intelligence Environmental Impacts Act of 2024."73 This act mandates that the Environmental 

Protection Agency (EPA) conduct a comprehensive study on the environmental impacts of AI, 

including energy consumption, pollution and electronic waste. The bill also requires that the National 

Institute of Standards and Technology (NIST) establish a consortium to develop standards and a 

voluntary reporting system for the environmental impacts of AI.  

v. Strains on the power grid 

In the past year, data center owners and operators have submitted a record number of requests for 

electricity interconnections in many places around the world. These requests are due in significant 

part to increasing demand for AI.74,75 Due to uncertain prospects for approvals, many data center 

operators have submitted more interconnection requests than they need. Yet even accounting for 

this “application frenzy,” data center power demand is still rising rapidly.76,77 (This topic is explored in 

detail in Chapter 15B of the Roadmap.) 

In many locations, electric utilities are unable to provide sufficient electric power to meet data center 

demand. In some locations, electric utilities do not anticipate being able to meet this demand for 

many years. Data center power demand is creating challenges with respect to resource adequacy 

(the ability of a power system to ensure sufficient generation capacity and other resources to reliably 

meet electricity demand at all times). Problems with resource adequacy increase risks of blackouts 

and brownouts, can lead to higher electricity prices, and compromise the reliability of an electric 

grid. 

Government policy can play an important role in responding to these challenges. Potential 

approaches include: 

▪ Construction moratoria halting approvals of new data centers until resource adequacy 

concerns are fully addressed; 
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▪ Suspension of data center tax incentives, slowing development that could raise resource 

adequacy concerns;  

▪ Permitting reforms that streamline approval processes for new projects, allowing faster 

deployment of generation and transmission infrastructure; 

▪ Locational incentives, such as zonal pricing and zoning rules for new data centers; 

▪ Demand response programs, which reduce peak load on the grid by incentivizing consumers to 

lower their energy usage during high-demand periods78; 

▪ Proactive transmission planning to anticipate future energy needs and strategically develop 

transmission networks that accommodate load growth from data centers and  

▪ Approval of infrastructure upgrades, such as expanding transmission lines and enhancing 

substations, thus increasing the grid's capacity to handle higher loads and reducing the risk of 

blackouts and brownouts.78 

Regulators and utilities are starting to adopt some of these measures. Ireland, Singapore and the 

Netherlands have each at times imposed construction moratoria on data centers to prevent grid-

related problems.79,80 The state of Georgia in the United States suspended a tax break for data 

centers pending analysis of power demand issues.81 

vi. Water stress 

Data centers are critical infrastructure for the digital economy, powering everything from cloud 

storage to AI computations. However, some data centers consume significant amounts of water, 

primarily for cooling the servers, which generate substantial heat. This water usage can strain local 

water resources, especially in regions already facing water scarcity. The impact on local water 

resources can be severe, leading to competition between industrial and municipal water needs and 

potentially exacerbating existing water stress. To mitigate this impact, some data centers are 

exploring alternative cooling methods, such as using recycled or non-potable water or adopting more 

efficient air-cooling technologies that reduce water dependency.82,83  

To address the environmental impacts of water consumption by data centers, governments can 

implement the following policy measures:  

▪ Mandatory water usage reporting. Enforce transparent reporting of both direct and indirect 

water usage by data centers on AI model cards. The EU Data Center Directive includes water 

usage reporting. 

▪ Water efficiency standards and targets. Establish water efficiency standards and clear targets 

for data center operations, mandating adoption of water-saving technologies like advanced 

cooling systems. 

▪ Water pricing mechanisms. Implement tiered water pricing systems that reflect the true cost 

of water, encouraging data centers to optimize their water use and reduce unnecessary 

consumption. 
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▪ Location-based restrictions. Impose restrictions on the location of new data centers in water-

scarce regions, directing development toward areas with abundant water resources to prevent 

strain on local water supplies.  

▪ Water recycling and reuse mandates. Mandate or promote using recycled or non-potable 

water for cooling purposes in data centers. 

Current examples of these policies include the EU-wide delegated regulation for rating sustainability 

of data centers,71 which includes mandatory water usage reporting for data centers, and the 

Singapore Building and Construction Authority’s Green Mark Certification scheme, which includes 

water efficiency criteria for data centers.84 

vii. Safety/security 

AI systems can create safety risks when they fail to operate as intended or have unintended 

consequences. Risks are especially acute when AI is used not only to inform human decision making, 

but to make decisions with limited or no human oversight. This can be especially dangerous in real-

time operations in industrial facilities, the power grid and autonomous vehicles. In addition, AI tools 

are subject to attack by hackers or others with malicious intent, creating security risks. AI systems 

expand the “attack surface” for hackers beyond that found in conventional hardware and software, 

increasing security risks.85,86 

Government policy can play an important role in addressing AI safety and security risks:    

▪ Regulatory frameworks. Governments can establish regulations that require safety 

assessments, security protocols and risk management procedures for AI systems, as well as 

independent testing and verification to ensure these standards are met before AI systems are 

deployed. 

▪ Certification and compliance. Governments can implement certification processes for AI 

systems that meet safety and security criteria. 

▪ Public-private partnerships. Governments can collaborate with industry stakeholders and 

research institutions to develop best practices, guidelines and tools for ensuring AI safety and 

security, funding research focused on AI safety and security. 

▪ Global cooperation and governance. Governments can engage in dialogue and cooperate with 

other governments around the world to establish global norms and standards for AI safety and 

security. 

▪ Public awareness and education. Governments can initiate public awareness campaigns and 

educational programs about the potential safety and security risks of AI. 
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D. Recommendations 

1. Governments should prioritize development of a climate-relevant data ecosystem. This should 

include the following:  

a. Governments should invest significant funds in data collection, curation and standardization. 

The climate-relevant data collected by governments should be easily accessible by all 

stakeholders. In developing climate-relevant data, governments should particularly focus on 

data-gathering from underrepresented regions and sectors, as well as on data types that 

have previously been unavailable or insufficient.  

b. Governments should adopt and promote data interoperability standards and invest in secure, 

scalable infrastructure for storing and disseminating climate-relevant data. Governments 

should also adopt clear data governance frameworks to ensure data privacy, security and 

ethical use.  

c. Governments should employ a combination of direct funding, low-interest loans, tax 

incentives, advanced market commitments and regulatory frameworks to help. 

2. Governments should help fund large-scale open-source foundational models tailored to 

addressing climate challenges. These models, in domains such as climate science, energy systems, 

food security and oceanography, could serve as the bedrock for a new generation of climate 

mitigation applications. By using existing open-source models and investing in new open-source 

models, governments can accelerate innovation, foster public-private partnerships and help 

develop solutions to pressing climate issues. International collaboration in funding and research 

will be essential to maximizing the impact of these models. 

3. Governments should incentivize AI applications that contribute to climate mitigation with (1) 

regulatory frameworks that prioritize climate-friendly AI; (2) financial incentives, such as grants, 

tax breaks and procurement preferences and (3) public recognition programs. In connection with 

these programs, governments should establish clear evaluation criteria to assess the climate 

impact of AI systems to help ensure that incentives are targeted effectively.  

4. Governments should invest in education and training programs to develop a skilled AI workforce. 

This should include supporting AI research, curriculum development and upskilling programs for 

both students and professionals. 

5. In shaping policies and programs on AI and climate change, governments should seek input from 

and work closely with a wide range of stakeholders, including technology companies, energy 

companies, academia and civil society. 

6. Governments should facilitate knowledge-sharing and collaboration between experts in climate 

mitigation and experts in AI. Governments should use their convening power (by organizing 

roundtables, task forces, advisory bodies and hackathons) and other tools for this purpose. 
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7. Governments should establish ethical guidelines for developing and deploying AI applications to 

help foster the trust and confidence in AI that will be important for using AI in climate change 

mitigation. These guidelines should address issues such as data privacy, bias, transparency, 

truthfulness and accountability. Governments should develop these guidelines in collaboration 

with industry, civil society and academia.  

 

RECENT AI POLICIES IN BRIEF 

as of November 2024 

UNITED STATES 

Leading AI policy announcements from the US federal government include: 

▪ The Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial 

Intelligence, released in October 2023, which requires developers of large AI models to share 

information about their products with the US government, streamlines visa processes for 

noncitizens working on AI and directs federal agencies to issue AI guidelines, among dozens of 

provisions2; 

▪ The AI Risk Management Framework, released by NIST in January 2023 to help “manage risks 

to individuals, organizations, and society associated with artificial intelligence”87 and 

▪ The Blueprint for an AI Bill of Rights, released by the White House in October 2022 to guide 

design and use of AI with five principles—safe and effective systems; algorithmic 

discrimination protection; data privacy; notice and explanation; and human alternatives, 

considerations and fallback.88 

In July 2023, President Biden met at the White House with the CEOs of leading AI companies, who 

pledged “to develop and deploy advanced AI systems to help address society’s greatest challenges,” 

including climate change.89 

In May 2024, the Bipartisan Senate Artificial Intelligence Working Group released its Roadmap for 

Artificial Intelligence Policy in the US Senate.90 The roadmap recommends that the federal 

government spend up to $32 billion for annual nondefense AI R&D and encourages Congressional 

committees to consider legislation on a wide range of AI topics including workforce training, 

transparency of AI systems, liability of AI developers and standards for using AI in critical 

infrastructure. 

In the past several years, many bills on AI have been introduced in the US Congress:  

▪ The Artificial Intelligence Environmental Impacts Act of 2024, which would mandate several 

measures to ensure environmental consequences of AI are thoroughly studied and reported91;  

▪ The CREATE AI Act of 2023, which would establish the National Artificial Intelligence Research 

Resource (NAIRR)92 and 
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▪ The AI Labeling Act of 2023, which would require all generative AI systems to include a clear 

and conspicuous disclosure that identifies content as AI-generated.93 

EUROPEAN UNION 

The European Union’s Artificial Intelligence Act entered into force on August 1, 2024. The Act 

comprehensively regulates AI in Europe, applying a risk-based approach. High-risk AI systems are 

subject to the most stringent controls. Activities considered to be especially risky—including live 

facial recognition and scraping of biometric data from social media platforms—are prohibited.1,94  

The European Union’s Energy Efficiency Directive, adopted in 2023, requires data centers with 

more than 500 kW of power demand to report energy consumption, renewable energy use, 

water use and related topics.95  Germany’s revised Energy Efficiency Act, also adopted in 2023, 

incorporates the EU reporting obligations, requires data centers to buy 50% of their power from 

renewable sources (rising to 100% by 2027) and sets other standards for data center 

operations.70  

In September 2022, the European Commission proposed the AI Liability Directive, which is 

intended to ensure that AI operators can be held liable for damages caused by AI systems. (In the 

absence of such a directive, the lack of transparency and complexity of AI systems could make 

recovery of damages difficult.) The European Parliament and Council of the European Union have 

not yet acted on the European Commission’s proposal. If the AI Liability Directive is adopted, EU 

Member States would then be required to incorporate its terms into national laws.96-101 

Other important EU AI policies include (1) the Coordinated Plan on Artificial Intelligence, updated 

in 2021, which aims to accelerate investments in AI technologies and align AI throughout the 

European Union102 and (2) the General Data Protection Regulation (GDPR) of 2016. AI is not 

explicitly mentioned in the GDPR, but many of its provisions—including those on purpose 

limitation, data minimization, the special treatment of “sensitive data” and limitations on 

automated decisions—are relevant to AI.103,104 

CHINA 

In July 2023, the Cyberspace Administration of China (CAC) and other entities published the 

Provisional Regulations on Management of Generative Artificial Intelligence Services. The Provisional 

Regulations require that any generative AI technologies used to provide services to the public in the 

China “reflect socialist core values” and prohibit content that “may harm national security and hurt 

the national image.”67 

In June 2023, China’s State Council announced that it will submit a draft AI law to the Standing 

Committee of the National People's Congress by the end of the year.105 This would be China’s first 

national AI legislation. 

In the past several years, the Chinese government has released a number of binding policy 

documents on AI: 
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▪ Provisions on the Administration of Deep Synthesis Internet Information Services, released by 

the CAC, the Ministry of Industry and Information Technology (MIIT) and the Ministry of Public 

Security (MPS) in November 2022. This policy document requires the labeling of synthetically 

generated content and prohibits AI tools from generating “fake news information.”106 

▪ Provisions on the Management of Algorithmic Recommendations in Internet Information 

Services, released by CAC, MIIT, MPS and the State Administration for Market Regulation in 

December 2021. This document includes provisions for content control and worker protection 

and created China’s “algorithm registry,” an online database. Developers are required to 

submit information to the registry on the training and deployment of their algorithms.107,108 

JAPAN 

In their May 2023 meeting in Hiroshima, Japan, G7 heads of state agreed to launch an initiative to 

strengthen collaboration on governance of generative AI. The initiative will be known as the 

“Hiroshima AI process.”109 Also in May 2023, the Japanese government held the first meeting of its 

Artificial Intelligence Strategy Council, attended by Prime Minister Fumio Kishida.110 

In April 2023, Japan’s governing Liberal Democratic Party released an AI White Paper with more than 

two dozen recommendations for promoting and managing the development of AI in Japan: 

▪ “Accelerate applied research and development by accumulating domestic knowledge on 

foundation models” 

▪ “Immediately initiate multiple pilot projects with visible results in a short period of time as 

specific examples of utilizing AI for basic administrative services” 

▪ “Provide strong support for AI-based smart city initiatives by local governments” 

▪ “Position the improvement of AI literacy in the public education curriculum in anticipation of 

the AI native era, when active use of AI in daily socioeconomic activities will be the norm”111,112 

The AI White Paper builds on Japan’s AI Strategy 2022, released in April 2022 by the Secretariat of 

Science, Technology and Innovation Policy within the Cabinet office. The AI Strategy 2022 sets forth 

five strategic objectives for AI development in Japan:  

▪ “A technological infrastructure that will enable Japan to protect its people in the face of 

imminent crises such as pandemics and large-scale disasters” 

▪ “Japan should become the world's most capable country in the AI era by developing human 

resources” 

▪ “Japan should become a top runner in the application of AI in real-world industries” 

▪ “In Japan, a series of technology systems to realize a sustainable society with diversity is 

established and a mechanism to operate them is realized” 

▪ “Japan should lead in building an international network in the AI field for research, education 

and social infrastructure”111,113 
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INDIA 
In April 2023, India’s Ministry of Electronics and Information Technology announced that the Indian 

government “is not considering bringing a law or regulating the growth of artificial intelligence in the 

country.” The ministry referred to AI as a “kinetic enabler of the digital economy.”114,115 In February 

2023, the Indian government announced the establishment of three new Centers of Excellence for 

Artificial Intelligence.116 

In 2021, Nitii Ayog published a Responsible AI/AIforALL report, proposing seven “principles for the 

responsible management of AI systems: (1 ) safety and reliability, (2) equality, (3) inclusivity and non-

discrimination, (4) privacy and security, (5) transparency, (6) accountability and (7) protection and 

reinforcement of positive human values.”117   

In 2018, Nitii Ayog released an AI Strategy calling for investment in education and training, privacy 

protections, and use of AI across the value chain.117 The Indian Government maintains an AI website 

at https://indiaai.gov.in/.118,119 
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CHAPTER 17: 

FINDINGS AND RECOMMENDATIONS 
David Sandalow, Colin McCormick, Alp Kucukelbir, Julio Friedmann and Michal Nachmany 

A. Findings

1. Artificial intelligence (AI) is contributing to climate change mitigation in important ways. AI tools

are helping integrate solar and wind power into electric grids, improve the energy efficiency of

industrial operations, monitor methane emissions and deforestation, implement sustainable

agricultural practices, speed innovations in battery chemistry and reduce greenhouse gas (GHG)

emissions in many other ways.

2. AI has the potential to make very significant contributions to climate change mitigation in the

years ahead. This includes incremental gains in many areas (e.g., renewable energy generation

and building energy management) and transformational gains in other areas (e.g., materials

innovation).

3. The principal barriers to using AI for climate change mitigation are (i) the lack of available,

accessible and standardized data and (ii) the lack of trained personnel.

▪ Successful AI applications are built on data that are available, accessible and standardized.

Poor data limit the quality of AI development.

▪ Policymakers, business leaders, factory operators and many others with a role in climate

mitigation need greater familiarity with the potential for AI to contribute to their work. More

computer programmers and data engineers with the skills to create AI applications for

climate change mitigation are needed as well.

4. Other barriers to using AI for climate mitigation include cost, lack of available computing power

and institutional issues. More resources are needed for training programs, RD&D (research,

development and demonstration) and other purposes. Some promising ideas may falter from

lack of access to the computing power needed to fully develop them. Many organizations

working on climate mitigation—including government agencies, businesses and

nongovernmental organization (NGOs)—are only beginning to incorporate AI into their

operations and organizational structures.

5. GHG emissions from AI computation are currently less than 1%—and perhaps much less than

1%—of the global total. Better data collection and assessment methodologies are needed to

provide a more precise estimate with high confidence.

6. GHG emissions from AI computation will very likely rise in the near-term. Sharply growing

demand for AI computation will very likely lead to increased GHG emissions in the near-term.

Efficiency improvements in AI hardware and software, as well as use of low-carbon energy in the

AI supply chain, will constrain but not prevent this growth in emissions.
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7. In the medium- to long-term, AI could result in either net increases or net decreases in GHG 

emissions. In part because AI is a transformational technology in the early stages of deployment, 

the range of uncertainty is enormous. Future GHG emissions from AI depend on a number of 

factors, including (i) growth in demand for AI, (ii) improvements in the energy efficiency of AI 

hardware, (iii) improvements in the energy efficiency of AI software, (iv) the use of low-carbon 

electricity in computation for AI, (v) the use of AI to reduce production costs in the fossil fuel 

sector, and (vi) the use of AI to reduce GHG emissions throughout the economy—such as the 

many AI applications discussed in this Roadmap. Each of these factors is highly uncertain and 

interacts with the others in complex ways. 

8. Only a tiny fraction of GHG emissions associated with AI operations are related to AI applications 

for climate change mitigation. There is little to no risk that using AI applications to reduce GHG 

emissions will increase GHG emissions from AI operations in amounts that would meaningfully 

reduce the GHG benefits of those applications. 

9. Trust in AI is essential for AI to deliver substantial benefits in mitigating climate change. To earn 

this trust, AI must undergo risk assessments that address a range of concerns. Risks related to 

safety, security, model accuracy, misinformation and disinformation require the closest 

attention. 

▪ Safety and security risks arise when AI is used in real-time in some industrial operations, but 

they can be addressed by keeping “humans-in-the-loop” at key stages.  

▪ Hallucinations and other inaccurate results from AI models can cause problems, but they can 

be addressed with education on how best to use AI models and their results. 

▪ Misinformation/disinformation can undercut political support for climate change mitigation 

but arise mainly in the context of large language models (LLMs) and not in most applications 

of AI for climate change mitigation discussed in this Roadmap.  

10. Open-source foundation models have the potential to contribute to climate change mitigation by 

providing more organizations opportunities to access AI tools. Foundation models dramatically 

lower the computational power required to use AI in new contexts because they only need 

minimal “fine tuning” to be useful and avoid redundant re-training by multiple organizations. 

11. Significant resources and sustained focus—by governments, corporations, philanthropies and 

other stakeholders—will be required for AI to reach its potential in helping mitigate climate 

change. Providing the human resources needed will require hiring and mission priority. 

Expansion of both funding and personnel are essential for delivering climate solutions at scale, as 

well as for building institutional knowledge, practice and processes. 

12. Several recommendations in last year’s ICEF Artificial Intelligence for Climate Change Mitigation 

Roadmap have been adopted by key stakeholders. For example, in March 2024, US Vice 

President Kamala Harris announced a directive requiring all federal agencies to name a chief AI 

officer1 (as suggested in Recommendation 6 in last year’s Roadmap). Also, member countries in 

the Clean Energy Ministerial (CEM) have launched an AI initiative under the CEM (as suggested in 

Recommendation 8A in last year’s Roadmap). 
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B. Recommendations 

1. Every organization working on climate change mitigation should consider opportunities for AI to 

contribute to its work. This process should receive high priority within the organization. 

Government agencies should explore ways AI could contribute to policy making, funding decisions 

and permitting processes. Businesses should explore ways AI could contribute to sustainability 

programs and low-carbon product development. Universities and non-governmental 

organizations should explore ways AI could contribute to research and public outreach. 

2. Governments, businesses and philanthropies should fund fora in which AI experts and climate 
change experts jointly explore ways AI could contribute to climate change mitigation. Sessions 
should be dedicated to potential AI applications, data requirements, personnel training and 
timelines to deployment, among other topics.  

 

3. Governments should assist in developing and sharing data for AI applications that mitigate 

climate change. 

a. Governments should systematically consider opportunities to generate and share data that 

may be useful for climate mitigation. This should include data with respect to weather 

patterns, electricity generation and use, manufacturing, crop and livestock production, 

hydrocarbon production and consumption, and transport. 

b. Governments should establish policies to promote standardization and harmonization of 

climate and energy-transition data. These policies should include (i) data management 

guidelines, such as the “FAIR Guiding Principles” (Findability, Accessibility, Interoperability 

and Reusability); (ii) data standardization and harmonization requirements in connection 

with government-funded RD&D; (iii) measures to ensure transparency, including access to 

metadata and core data and (iv) funding for data standardization organizations and 

activities. 

c. Governments should establish climate data task forces composed of key stakeholders and 

experts. The UK’s Energy Data Task Force provides a good model. Climate data task forces 

should start by inventorying data gaps and identifying potential barriers to data access. They 

should plan ways to federate, share and anonymize data for AI applications relevant to 

climate mitigation. 

4. Companies with datasets relevant to climate change mitigation should consider sharing portions 

of these datasets publicly. Public release of a company's datasets can provide direct benefits to 

that company by encouraging development of algorithms helpful to the company, attracting AI 

talent and facilitating integration with related datasets. Public release may provide broader social 

benefits, as well. In releasing datasets, companies must anonymize and strictly protect personally 

identifiable information. 

  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

November 2024  Chapter 17: Findings and Recommendations - 17-4 

  

 

5. Every organization working on climate mitigation should prioritize AI skills-development and 

capacity-building. 

a. Governments and foundations should launch AI-climate fellowship programs. These 

programs should identify promising students (from developing countries and 

underrepresented communities, in particular) and fund fellowships in AI and climate-focused 

topics. 

b. Government agencies with responsibility for climate issues should regularly review the 

capabilities of their staff with respect to AI. The goals should be to continually enhance these 

capabilities and to ensure that opportunities for AI to advance their mission are recognized 

and accurately evaluated.  

c. Every organization working on climate change mitigation should require minimum AI literacy 

from a broad cross-section of employees. Understanding of AI’s capabilities and experience 

working with AI will contribute to employees’ impact and effectiveness in the years ahead.  

6. Educational institutions should offer courses that provide familiarity with AI and its uses in climate 

mitigation. Primary and secondary schools should teach basic skills. Universities and continuing 

education programs should offer courses, fellowships, internships and certification programs. 

7. Governments should adopt policies to minimize GHG emissions from AI’s computing 

infrastructure, including requiring AI developers and data center operators to disclose GHG 

emissions associated with their operations on a full lifecycle basis. Governments should (i) work 

with standard-setting bodies, AI developers and data center operators to standardize GHG 

emissions reporting protocols, (ii) prioritize AI systems with low GHG emissions when procuring AI 

solutions; (iii) invest in RD&D on energy-efficient AI algorithms and hardware, (iv) promote data 

centers that emit minimal GHGs through a range of measures, including regulations, guidelines 

and/or financial incentives; and (v) implement ambitious emissions-reduction programs that 

incentivize all companies, including AI and data center operators, to reduce their GHG emissions. 

8. Organizations that use AI for climate change mitigation should assess and address potential risks 

of AI tools. These organizations should pay close attention to (i) safety and security risks, 

especially if AI is being used in real-time operations in industrial settings or grid management and 

(ii) AI model accuracy, especially with AI systems that require up-to-date data to function 

correctly. Organizations should address the risk of misinformation and disinformation from LLMs, 

with worker training and adhering to best practices around adopting and using LLMs. 

9. All government agencies with responsibility for climate change, including environment and energy 

ministries, should create an Artificial Intelligence Office, responsible for assessing opportunities, 

barriers and risks with respect to AI in all aspects of the agency’s mission. These agencies should 

also consider (1) hiring an advisor to the head of the agency who has responsibility for advising on 

all matters related to AI, (2) creating a unit to improve AI skills throughout the organization and 
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(3) launching a strategic planning process to consider ways that topics related to AI can best be 

addressed within the ministry on an ongoing basis. 

10. Governments should provide substantial funding for developing and applying AI applications for 

climate mitigation. 

a. Governments should fund AI for climate change mitigation programs with a focus on 

emissions reduction potential, not just new AI methods. Innovations in AI methodologies are 

important but may not be required for high-impact climate mitigation programs. Some 

funding programs should prioritize emissions-reduction potential using AI as a selection 

criterion. 

b. Governments should help increase the availability of computing power for AI projects related 
to climate change mitigation. They should do so by (i) investing in computing infrastructure, 
(ii) soliciting proposals for projects that use AI for climate change mitigation and (iii) making 
computing power available without cost for proposals that offer the greatest potential 
benefits. This could include solicitations from the private sector in partnership with 
governments. 

 

11. Governments, philanthropies and information technology companies should play a pivotal role in 

funding development of large-scale open-source foundation models tailored to address climate 

challenges. These models, in domains such as climate science, energy systems, food security and 

oceanography, could serve as the bedrock for a new generation of climate mitigation 

applications. By investing in this critical infrastructure, governments can accelerate innovation, 

foster public-private partnerships and create a fertile environment for developing solutions to 

pressing climate issues. International collaboration in funding and research will be essential for 

maximizing the impact of these models. 

12. Governments should launch international platforms to support cooperative work on AI for climate 

change mitigation. 

a. Member countries in the Clean Energy Ministerial (CEM) and Mission Innovation (MI), as well 

as other stakeholders, should participate actively in the CEM/MI AI initiative. 

b. The United Nations Framework Convention on Climate Change (UNFCCC), International 

Energy Agency (IEA) and Food and Agriculture Organization of the United Nations (FAO), 

among other organizations, should build AI-for-climate issues centrally into their work 

programs. 

c. One or more global organizations should be tasked with helping reconcile any conflicting AI-

enabled data on GHG emissions. The International Methane Emissions Observatory (IMEO) 

could fulfill this role with respect to methane emissions. The World Meteorological 

Organization (WMO) and FAO could fulfill this role for CO2 and some other GHG emissions 

datasets.   
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Appendix A: 

ADDITIONAL READING 
For anyone interested in additional reading on artificial intelligence and climate change, we 
especially recommend these sources: 

1. Pierre Gentine, et al. AI for Climate and Nature: Landscape Assessment; Columbia University
& Bezos Earth Fund, New York, New York, https://www.climate.columbia.edu/ai-climate-
nature-landscape-assessment (2024).

2. Kenddrick Chan et al. Greening AI: A Policy Agenda for the Artificial Intelligence and Energy
Revolutions; Tony Blair Institute for Global Change (TBI), London, UK,
https://institute.global/insights/climate-and-energy/greening-ai-a-policy-agenda-for-the-
artificial-intelligence-and-energy-revolutions (2024)

3. Keith J. Benes, Joshua E. Porterfield & Charles Yang. AI for Energy: Opportunities for a Modern
Grid and Clean Energy Economy; US Department of Energy (DOE), Washington, D.C.,
https://www.energy.gov/cet/articles/ai-energy (2024).

4. Amy Luers et al. Will AI accelerate or delay the race to net-zero emissions? Nature 628, 718-
720 (2024). https://doi.org/10.1038/d41586-024-01137-x.

5. David B. Olawade et al. Artificial intelligence potential for net zero sustainability: Current
evidence and prospects. Next Sustainability 4, 100041 (2024).
https://doi.org/10.1016/j.nxsust.2024.100041.

6. Amane Dannouni et al. How AI Can Speed Climate Action; Boston Consulting Group (BCG)
and Google, Boston, Massachusetts, https://www.bcg.com/publications/2023/how-ai-can-
speedup-climate-action (2023).

7. Lynn H. Kaack et al. Aligning artificial intelligence with climate change mitigation. Nature
Climate Change 12, 518-527 (2022). https://doi.org/10.1038/s41558-022-01377-7.

8. David Rolnick et al. Tackling Climate Change with Machine Learning. ACM Comput. Surv. 55,
Article 42 (2022). https://doi.org/10.1145/3485128.

In addition, we recommend exploring the References sections of the 17 chapters in this Roadmap, 
which contain many hundreds of sources on a wide variety of topics related to artificial intelligence 
and climate change.  
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Part II: SECTORS 

Chapter 3 – Power System 
1. Utilities and independent power producers should use artificial intelligence (AI) tools for a wide 

range of purposes, including helping to plan renewables projects, monitor the condition of power 
equipment, integrate distributed energy resources into the grid, run demand response programs 
and optimize the use of energy storage systems. In doing so, utilities and independent power 
producers should prioritize rigorous testing, continuous monitoring and robust fail-safe 
mechanisms, setting benchmarks for the transparency of AI systems.  

2. Electricity regulators should create clear regulatory frameworks to support using AI in energy 
management. These frameworks should include rates that provide cost recovery for AI-related 
investments, such as smart meters, sensors and open-source grid management software. The 
frameworks should address risks related to data privacy, safety and cybersecurity. 

3. National governments, electricity regulators and utilities should work together to develop and 
enforce data standards for all aspects of grid operations. Regional governing bodies, such as the US 
independent system operators (ISOs) and regional transmission organizations (RTOs), should 
prioritize standardization of data to enable cross-regional analysis. These data should be available 
in industry standard formats in free and publicly available portals for use in AI modeling and 
research. 

4. Utilities, regulatory agencies and academic experts should work together to develop AI-driven AC-
OPF (alternating current-optimal power flow) models and permitting reforms. These models should 
be used to reduce delays in the interconnection process and accelerate deployment of new 
renewable generation sources to the grid. 

5. Academic experts should emphasize geographic specificity in AI-driven weather models to increase 
the utility of weather forecasting for renewable energy production within specific boundaries (e.g., 
ISOs, climate zones). These experts should develop models that forecast within a smaller range than 
nearby weather station radii, focusing on wind direction, wind speed, solar radiation and cloud 
cover. 

6. Utilities and electricity regulators should launch programs for training workers in the power sector 
to assess and use AI-driven technologies.  

7. National governments should encourage and fund collaborative research and development (R&D) 
projects between academic institutions, industry and utilities focused on AI and related applications 
for renewable power, energy efficiency and emissions reduction, including AI-driven forecasting 
tools and grid management systems. 
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Chapter 4 – Food Systems 
Food systems are highly decentralized, with an estimated 570 million farms worldwide, each operating 
in specific agroecological and socioeconomic contexts, challenging the notion of one-size-fits-all AI 
solutions. To address the myriad unique issues associated with AI applications in food systems and to 
ensure their responsible and effective deployment across contexts, we recommend the following 
priorities targeted at a range of institutional structures (Table 4-3): 

1. National governments should expand public R&D funding to develop and study AI applications in 
remote sensing, agricultural systems modeling, crop breeding and other high impact application 
areas. 

2. Researchers, industry associations and standards development organizations should collaborate to 
develop and share benchmark datasets, sample algorithms and standard performance metrics for 
AI applications. 

3. National governments and businesses should invest in developing adaptive data collection 
technology, such as Internet of Things sensors and mobile apps, to enable continuous updating of AI 
models with relevant, accurate and timely data. 

4. Academic institutions and research organizations should prioritize inclusive and participatory 
approaches to developing AI models and tools, such as engaging farmers, extension agents and 
community organizations, to ensure that AI solutions are context-specific, user-centered and 
aligned with local needs and priorities. 

5. Professional societies, academic institutions and international organizations should develop and 
promote guidelines, best practices and training programs on the appropriate use of AI in food 
systems, covering issues such as data privacy, model transparency, potential biases, risks and 
limitations. 

6. National governments, private companies and civil society organizations should establish 
collaborative data ecosystems for food systems that have clear frameworks for data sharing, 
ownership and access rights. 

7. Research funding agencies and philanthropy should support interdisciplinary research on ethical, 
legal and social implications of AI in food systems, as well as development of responsible AI 
governance frameworks and accountability mechanisms. 

8. Private companies and model developers should prioritize development of human-in-the-loop model 
improvement approaches, incorporating user feedback and local knowledge to iteratively refine AI 
solutions and ensure their adaptability to evolving climate challenges and food system dynamics. 

9. International organizations and multi-stakeholder platforms should facilitate knowledge exchange, 
capacity building and coordination of AI R&D with a focus on promoting inclusive innovation and 
equitable access to AI technologies. 
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A responsible AI information ecosystem is based on the principles of true multi-stakeholder 
collaboration, the incorporation of local knowledge and priorities, the prioritization of transparency 
and accountability, and an emphasis on continuous, adaptive improvement. A coordinated approach 
can support the critical transition to more sustainable, resilient and equitable food systems that are 
bolstered against the impending challenges of climate change. 

Table 4-3. Recommendations  

GOVERNMENTS CIVIL SOCIETY INTERNATIONAL 
ORGANIZATIONS BUSINESS SCIENCE 

Convene consortia 
exchanging food 
system data 

Ensure equitable 
access to AI tools in 
food systems 

Establish oversight 
and accountability 
mechanisms 

Create forums for 
stakeholder 
feedback on AI 
policies  

Support 
participatory 
collection initiatives 
for agricultural data 

Invest in rural 
connectivity 
infrastructure 

Monitor data use 
and privacy issues 

Advocate for 
inclusive and 
transparent data 
governance 

Provide training in 
digital literacy to 
marginalized groups 

Create resources on 
ethics in AI for food 
systems  

Monitor AI adoption 
and impacts 

 

Coordinate global 
data-sharing efforts in 
food systems 

Develop privacy and 
security frameworks 
for data in food 
systems  

Promote inclusive AI 
development 

Facilitate technology 
transfer and capacity 
building 

Identify and fill data 
gaps 

Share pre-competitive 
research and data 

 

Participate in industry 
data consortia and 
standards bodies 

Ensure diversity in AI 
teams and training 
data 

Invest in Internet of 
Things and mobile 
data collection  

Develop scalable, 
accessible data 
architecture  

Co-develop tools that 
help identify barriers 
and limits to 
adaptation 

Develop open-source 
libraries, platforms, 
models and tools 

Study the ethical, 
legal and social 
elements of AI in 
food systems 

Advance 
explainable, 
interpretable AI 
techniques 

Establish model 
evaluation 
protocols using 
open benchmark 
datasets 

Standardize data 
formats for ease 
of interoperability 

Identify and fill 
data gaps 

 

Chapter 5 – Manufacturing Sector 
1. Private companies should engage with governments, non-profits and academia to develop, release 

and maintain AI-ready datasets that pertain to industrial operations. This effort should leverage 
best practices for data sharing and hosting. Private companies should encourage those interested in 
leveraging their data to explore high-impact AI applications. 

2. Private companies should develop clear processes to accelerate the adoption of digitalization within 
their organizations, from streamlining vendor evaluation to incentivizing internal adoption of AI in 
high impact use cases.  

3. Technical societies should develop educational assets and programs to increase digital and AI 
literacy within industrial workforces. These initiatives should scale across the workforce, from 
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operators up to executives. Emphasis should be on developing a foundational skill set that will 
enable the manufacturing sector to adopt AI-based solutions. 

4. Governments and standards organizations should incentivize market demand for AI-optimized 
products that exhibit increased material circularity and lower carbon footprints. Governments 
should offer financial incentives to adopt such goods. 

5. Governments and academia should develop and deploy education opportunities at the intersection 
of AI and manufacturing as part of computer science and engineering programs. 

6. Governments should incentivize the market of recycled feed and fuel stock to increase their supply 
and reduce their costs. This reduces a barrier for adopting AI to increase material circularity. 

Chapter 6 – Road Transport 
A. Vehicle Electrification 

1. Local governments should promote development and deployment of AI-optimized electric vehicle 
(EV) charging stations, update building codes that require incorporating such systems in new 
installations, and run public awareness campaigns to educate residents and businesses about the 
benefits of intelligent EV infrastructure. 

2. Industry and academia should form partnerships to drive innovation in AI-enhanced EV 
technologies. These collaborations should focus on developing AI-driven solutions to improve 
battery lifespan, efficiency and recycling methods. 

3. National governments, industry and academia should invest in AI research for battery and motor 
advancements, leveraging high-performance computing (HPC) for materials discovery; integrating 
AI methods to enhance performance, safety and lifespan; and promoting collaborations such as the 
US Joint Center for Energy Storage Research and the European Battery 2030+ Initiative. 

4. National governments should establish comprehensive regulations for AI applications in EV 
technology on topics including data privacy, usage and storage. These regulations should align with 
global standards to facilitate international cooperation and ensure responsible and ethical use of AI 
tools. 

5. Industry and standards development organizations should work together to develop standards for 
AI applications in EVs, covering topics such as battery monitoring, charging optimization and 
communication protocols. 

B. Alternative Fuels 
1. National governments should implement incentive programs such as subsidies and grants, to 

encourage AI-driven research and development of alternative fuels. They should also increase 
simulation capabilities to evaluate the life-cycle and infrastructure impact of innovative fuels. 

2. Industry and academia should increase collaborative research efforts to enhance efficiency and 
reduce the environmental impact of alternative fuels based on AI methods, for example by 
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establishing innovation hubs and providing funding and support for startups working on AI-driven 
technologies in these fields. 

3. Governments, academia and industry should develop centralized data-sharing platforms where 
researchers can access and share datasets related to alternative fuels to facilitate data exchange, 
enhance research quality and speed up discoveries. 

C. Intelligent Transportation Systems (ITSs) 
1. National governments and intergovernmental organizations should establish comprehensive data 

privacy regulations for AI applications in transportation following examples such as the United 
Nations' global AI resolution. These regulations should ensure clear guidelines to safeguard human 
rights, protect personal data and support AI use to mitigate climate impact in road transport. 

2. Local governments should invest in smart infrastructure and develop long-term strategic plans, 
implementing procurement policies, conducting public awareness campaigns and investing in 
sensor-driven infrastructure for AI-based real-time decision making. 

3. Industry and standards development organizations should collaborate to establish standards for 
smart transportation technologies, including V2X (“vehicle-to-everything”) communication, data 
security, EV charging connectors and harmonized communication networks leveraging 5G and 
satellite technology to ensure integration and distributed interoperability. 

4. National governments, industry, and academia should increase research and data collection for 
intelligent transportation systems to support AI in mitigating climate impact in road transport, 
enabling complex simulations using HPC, and launching large-scale collaborations and pilot projects 
for smart infrastructure development. 

D. Modal Shift 
1. National governments should allocate funding for AI projects that optimize multi-modal transit 

routes, predict demand and improve shared mobility services, ensuring a streamlined and 
transparent application process for research institutions and private companies to access these 
funds. 

2. Governments, industry, and academia should form consortia to develop AI-driven mobility 
platforms in major cities, integrate pilot projects to test strategies like dynamic pricing and 
optimized public transit schedules, and publish findings for wider implementation. 

E. Autonomous Vehicles (AVs) 
1. Local and national governments should collect and share data on the greenhouse gas (GHG) 

impacts of AVs, including data on supply chain emissions.  

2. Local governments should develop regulations and run pilot projects to facilitate integration of AI-
driven autonomous mobility solutions that reduce carbon dioxide (CO2) emissions. 
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3. Industry and academia should expand research efforts and develop improved simulation capacities 
to help develop AI-based methods that offer a safe test bed for evolving autonomous driving 
capabilities, focusing in particular on ensuring that AVs help reduce CO2 emissions. 

Chapter 7 – Aviation 
1. National governments should expand public R&D funding for applying AI/machine learning (ML) 

methods to aircraft design, engine design and aircraft operations, with a focus on improving fuel 
efficiency, enabling the use of sustainable aviation fuel (SAF), and reducing non-CO2 impacts 
(including contrails). To ensure this funding targets priority areas, the relevant funding ministries 
should enhance the AI/ML expertise of program management staff through training and/or hiring. 

2. Aviation technical societies, associations and standards development organizations should expand 
technical resources available for AI/ML-enabled aircraft design and operations, including developing 
benchmark datasets, releasing sample algorithms and publishing standard performance metrics. 

3. National governments should increase the coverage and quality of publicly available meteorological 
data (temperature, pressure, humidity) in commonly traveled air spaces to enable improved 
modeling of the non-CO2 climate impacts of aviation, including contrail formation. 

4. National governments, philanthropy and private companies should collaborate to improve the state 
of the art on digital modeling of atmospheric contrail formation by aircraft, including use of 
advanced AI/ML techniques. High-quality models should be made publicly available. 

5. National governments should require all commercial and private aircraft to track and report non-
CO2 impacts, including contrail formation. This should be through public-facing data portals or 
similar methods that minimize the burden of data collection and computation on the private actors 
covered by these requirements. Aggregated results should be publicly released. 

6. Carbon accounting bodies should update accounting rules to include the full set of climate impacts 
of aviation, including contrails. Private companies with aviation-based supply chains should adopt 
the use of these updated rules in measuring supply chain greenhouse gas (GHG) emissions.  

7. National governments should ensure that the regulatory frameworks for approving novel aircraft 
and engine design are compatible with using AI/ML methods and should update them accordingly if 
necessary. Aviation regulatory bodies should collaborate directly on these topics to ensure that 
regulations are harmonized as much as possible across national borders. 

Chapter 8 – Buildings Sector 
1. Governments at all levels working with the private sector should identify and pilot AI-supported 

technological improvements in design, materials, construction and demolition that reduce the 
embedded carbon in buildings. 

2. National governments should develop research and development programs for AI improvements in 
emissions efficiency of building operations (including HVAC systems, lighting, elevators and other 
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mechanical systems). Municipalities should explore more restrictive commercial-building energy use 
and emissions standards (including for Scope 2 emissions) that become attainable through AI. These 
efforts should combine a “pull” strategy of government support paired with a “push” effort of more 
restrictive norms. 

3. Public and private construction organizations should engage government research agencies, 
academia and the nonprofit community in providing support for developing and deploying AI. 
Sharing data, encouraging the development of standards and best practices, and creating venues 
for dissemination and discussion of these results can help accelerate development and deployment 
of AI in this sector. In particular, using AI to build more sophisticated life-cycle analytic tools can 
help optimize AI’s impact and reduce the possibility of its misapplication. 

4. Governments, the private sector and professional associations should develop a platform to 
disseminate best practices regarding improving digitalization and other data collection to support 
the deployment of AI to reduce building energy use and emissions (including Scope 2). This platform 
should be tied into the areas of action for AI identified under recommendations 1, 2 and 3. These 
groups should also work with suppliers to increase the availability and improve the affordability of 
related sensors and other equipment. 

5. Multilateral development banks, national/bilateral organizations and other donor agencies should 
develop a program of technical assistance and funding to increase the capacity of stakeholders both 
(1) to develop domestic AI innovation programs for the buildings sector in urban areas and (2) to 
implement AI-enhancements, whether designed locally or abroad. AI in the buildings sector should 
be adapted to the opportunities and constraints presented by developing economies, including 
designing and deploying technology-appropriate solutions (such as low-tech approaches where 
country conditions present constraints), as well as encouraging data gathering in those 
geographies. 

6. Governments, in association with city associations and academia, and supported by international 
development agencies, should identify and develop one or more urban development pilot programs 
to explore using AI to lower embedded carbon and operational emissions. The new cities being built 
in emerging economies (such as Indonesia’s new capital, Nusantara) provide a possible opportunity 
for targeted cooperation between donor agencies, such as the World Bank and Japan’s JBIC, 
together with developing-country national and municipal authorities (e.g., Egypt’s new 
administrative capital). 

Chapter 9 – Carbon Capture 
1. National governments and private companies should expand current research, development and 

demonstration (RD&D) programs in carbon capture to include AI methodologies, with 
commensurate increased funding.  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Appendix B - 9 

  

 

a. Specific use-inspired research topics would include material discovery (especially sorbents and 
solvents for carbon capture), functionalization of materials, and novel reactor design (including 
catalysts for CO2-to-products). They should consider prioritizing efforts beyond simple material 
discovery and focus on more applied and operational aspects of CO2 capture. Near-Medium 
term 

b. Applied research topics could include optimizing systems (including heat integration, use of 
digital twins, minimization of heat and electricity demands) and designing key infrastructure 
pathways (including location, size and operation for CO2 transportation and storage design), 
operation and MMRV (measurement, monitoring, reporting and verification)). Near and 
medium term, with near term emphasis. 

c. Government granting entities must hire and/or train personnel that are sufficiently trained and 
knowledgeable to be able to review AI-related proposals well. Near and medium term. 

2. Asset owners, utility owners and operators, industrial manufacturers and key state-owned 
enterprises should use AI tools and methodologies to accelerate assessment of carbon capture, 
utilization and storage (CCUS) pathways for existing and planned assets. This should include cost-
benefit determinations in comparison with other decarbonization options, with the goal of 
establishing a ranking of opportunities. Near term. 

3. National governments should use AI, including large language models (LLMs) and other generative 
AI platforms, to streamline permitting processes for carbon capture in all forms. This includes 
permitting wells for CO2 injection and processing pipeline rights of way, power electronic designs, 
and processing revisions to air permits for facility retrofits. Near term. 

4. National governments and private companies should use AI to improve resource characterization 
for carbon capture, with emphasis on characterizing geological storage resources. AI-enabled 
resource characterization should extend beyond bulk storage terms and volume estimates to 
include understanding of injectivity, permeability fields and risks posed by pre-existing wells. Where 
possible, national and state governments and some private companies should make data available 
for training, either through voluntary sharing and federation or mandates. Near term. 

5. Professional societies, academic experts and carbon accounting bodies should launch training 
programs on the potential for AI in carbon capture. This could include use of AI for life-cycle 
assessments of carbon capture systems, as well as the RD&D topics stated above. Near and medium 
term. 

6. National governments, private companies and academic researchers should immediately 
commence with identifying key data requirements for enabling AI in carbon capture. Once 
identified, these three groups should work to gather, federate and share these data while providing 
fair, judicious access. Near term. 
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Chapter 10 – Nuclear Power 
1. Nuclear regulators should be open to AI playing a role in reactor design, safety analyses and 

recommendations for operating procedures. The operative question is the quality of the work 
product, not the identity of the designer. All designs, analyses and procedures, whatever their 
origin, should be run through rigorous reviews. Additional oversight, checks and security hardening 
may be part of this work. 

2. Plant owners and regulators should assure that AI will be used only in advisory and alerting roles. 
Nuclear plant operators should play the same role in a plant that uses AI as in a plant that does not. 
The operator should not become like a car driver who plays video games while driving; humans 
must remain in the loop, engaged and active, despite the routine work performed by AI. Nuclear 
plant owners should look at the experience in aviation, power and other relevant industries.  

3. The civilian nuclear industry should scrutinize AI technologies funded by government dollars through 
science R&D agencies for applicability to their operations. 

4. Nuclear regulatory bodies should be preparing for license requests from microreactor companies 
that include a role for AI in remote control.  

5. Regulators should consider employing the UK Office for Nuclear Regulation’s (ONR’s) initiative to 
test different AI technologies in a controlled environment to understand AI’s potential to enhance 
various aspects of nuclear operation and regulation (“sandboxing”). Through sandboxing, 
regulators can test, refine and evaluate the algorithms within the context of nuclear safety. 

6. Government innovation agencies should integrate AI into their RD&D plans. Key foci of innovation 
investments should include sustaining the existing fleet, advanced reactors, and non-electric 
applications of nuclear energy 

7. Plant owners should engage with the scientific community to provide access to high-quality data 
that can drive AI development and deployment. Professional societies should support development 
and dissemination of best practices in gathering, annotating, hosting and sharing such data. 

8. Professional societies should offer educational resources and training to attract the attention of the 
AI community to the nuclear sector. These societies should also reach out to computer science 
academic departments, professional computer science societies and government agencies to 
encourage development of AI skills within the nuclear sector. 

9. Nuclear regulatory agencies should hire staff with AI expertise to efficiently evaluate and 
recommend adoption of high value-add AI applications in nuclear power. 
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Part III: CROSS-CUTTING ISSUES 

Chapter 11 – Large Language Models 

1. Private companies and academic researchers should continue to develop LLMs specifically trained 
on climate data and ensure they are openly available so the public can both improve them and 
benefit from them. 

2. National governments, private companies, academic researchers and standards development 
organizations should cooperate on developing further benchmarks for evaluating LLMs’ knowledge 
in the climate domain, thus extending the existing ecosystem for evaluating LLMs’ knowledge in 
general. 

3. Professional societies and academic experts should develop training programs on the proper use 
and limits of LLMs in mitigating climate change to help the public better understand the benefits 
and risks of using LLMs in the climate domain. 

4. National governments, private companies and academic researchers should cooperate on 
developing public challenge competitions on proposed climate mitigation use cases of LLMs to 
advance their development. 

5. National governments and private companies should expand current R&D programs in addressing 
known issues with LLMs, so the public can place greater trust in LLMs, especially when applied to 
climate change. 

6. LLM developers and users should publish fine-grained measurements of LLMs’ carbon footprint by 
adopting tools to track and report the GHGs emitted by their compute time. 

7. National governments should fund R&D for public-facing prototypes to advance the use of LLMs for 
accelerating permitting of renewable energy. 

Chapter 12 – Greenhouse Gas Emissions Monitoring 
Several measures could help address the barriers and overcome the risks described above, promoting 
the use of AI tools for GHG emissions monitoring.  

1. National governments should encourage the United Nations Framework Convention on Climate 
Change (UNFCCC) to update guidance on preparing national emissions inventories to explicitly allow 
the use of AI-enabled data rather than primarily emissions factor–based assessments. This would 
provide for more accurate baselines and thus make it easier to optimize climate policies and to 
better tailor them to specific national conditions, while also better recognizing the progress of 
countries in reducing their climate footprint. 

2. Carbon accounting bodies, such as the GHG Protocol of the World Resources Institute (WRI) and 
World Business Council for Sustainable Development (WBCSD) or the Science Based Targets 
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Initiative (SBTI), should develop rules for including AI-enabled data as part of corporate carbon 
footprints, supply chain emissions estimates and related emissions-tracking efforts. When feasible, 
they should encourage or prioritize the use of validated AI-enabled emissions data over generic 
emissions factors. In tandem with this, other relevant multilateral institutions, such as the World 
Trade Organization (WTO) and International Energy Agency (IEA), should continue1 explicitly 
addressing the topic of using AI-enabled emissions data and should identify roles they can 
productively play in advancing its use in a scientifically robust manner. 

3. National governments and appropriate international bodies should consider how best to set up the 
housing and governance regime of AI-enabled emissions data, including such questions as whether 
one or several national or international organizations or private entities should function as de facto 
or de jure central data repositories or clearinghouses. Clear options should be defined and decisions 
made in the short-term. To the extent that the market or regulations require information on GHG 
emissions in supply chains, the quality of emissions data will be of paramount importance. To be 
effective, emissions data will need buy-in from as many stakeholders as possible and must be 
independently replicable. Governments and multilateral organizations should consider the role of 
existing institutions, such as the International Methane Emissions Observatory (IMEO), the World 
Meteorological Organization and the Food and Agriculture Organization, as well as major 
philanthropic organizations and for-profit companies, in providing repository and clearinghouse 
services for AI-enabled GHG emissions data. 

4. National governments and appropriate international bodies should continue ongoing efforts toward 
standardizing AI-enabled emissions data and should consider whether to set up formal processes to 
certify AI-assisted emissions data and data providers. In the last two years, National Institute of 
Standards and Technology (NIST) at the US Department of Commerce and the UK Space Agency 
have spearheaded a series of brainstorming workshops and consultations with leading scientists 
and industry participants from around the world, with the goal of achieving greater standardization 
and consistency in AI-assisted measurements of methane and other GHG emissions and of 
preempting the risk of future conflicting data.2 These efforts are highly worthwhile and ought to be 
continued so as to guarantee the scientific integrity and comparability of emissions data and to 
build public trust. To the extent possible, participation should be broadened to include more 
representatives from emerging and newly developed economies and major exporters of 
commodities and manufactured goods. 

5. National governments, philanthropic organizations and private-sector companies should support 
ongoing “ground truthing” efforts by research universities and scientific organizations that aim to 
independently assess the performance of AI-assisted GHG monitoring technologies. Because AI-
enabled GHG monitoring technologies often detect and measure emissions that cannot be 
otherwise detected or measured, proving their accuracy can be challenging. Hence, there is a need 
to support public research to develop ways of independently replicating and corroborating AI-
enabled data and verifying their accuracy based on well-calibrated ground-truth experiments. 
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6. National governments and private-sector organizations should enhance their in-house AI 
proficiency, whether by requiring minimum AI literacy standards from a broad cross-section of 
employees or by building up dedicated AI-focused units and data-science centers within their 
organizations. Minimum AI literacy may be essential for these organizations to deploy AI-enabled 
GHG emissions data and to integrate those data into public and proprietary databases and 
operational systems. Professional standards bodies should update accreditation requirements for 
professions, such as public accounting and civil engineering, to require demonstration of minimal AI 
proficiency and the ability to use basic AI technologies. This would serve as a step to support 
adoption and implementation of emissions abatement targets by industry and carbon accounting 
by corporations. Trade and professional organizations, such as the Society of Petroleum Engineers 
(SPE) or the International Association for Energy Economics (IAEE), should support AI literacy among 
their members and the adoption of AI-enabled GHG monitoring, including through training 
programs in countries where these technologies are not widely available. 

7. Banks, asset managers and other private-sector actors should use AI-enabled methane emissions 
data to quantify the embedded emissions of fossil fuel shipments, following the lead of some 
financial institutions who have already begun this practice.  

1) International Energy Agency (IEA). Progress on data and lingering uncertainties in Global 
Menthane Tracker 2024  (Paris, France, 2024, https://www.iea.org/reports/global-methane-
tracker-2024/progress-on-data-and-lingering-uncertainties). 

2) Committee on Earth Observation Satellites (CEOS). International Methane Standards Workshop; 
UK Space Agency and US National Institute of Standards and Technology (NIST), London, UK, 
https://ceos.org/meetings/uksa-methane-workshop/ (2024). 

Chapter 13 – Materials Innovation 
1. National governments should increase R&D budgets for AI-enabled materials discovery, with a focus 

on holistic design considerations that include full life-cycle GHG emissions. Support should also be 
made available for creating new automated and partly autonomous materials-testing laboratories 
in a variety of locations around the world. By combining AI and robotics, these facilities could unlock 
broad global access to rapid iterations in materials design and testing, reducing the challenges of 
participating in advanced materials development for researchers in resource-limited countries.1  

2. Private companies should engage directly with AI-guided materials-discovery efforts by clarifying 
manufacturability constraints and offering embedded emissions guidelines. This could also include 
articulating specific materials classes of interest for commercially relevant low-carbon technologies 
and issuing benchmarks and/or targets for key performance thresholds. 

3. National governments, academia and private companies should collaborate to develop and release 
(or expand existing) AI-ready datasets of material properties that can be used by other research 
teams to train high-performance models. This effort should use standard data formats and be at 
least loosely coupled to materials-synthesis and -testing facilities to validate results. 

https://www.iea.org/reports/global-methane-tracker-2024/progress-on-data-and-lingering-uncertainties
https://www.iea.org/reports/global-methane-tracker-2024/progress-on-data-and-lingering-uncertainties
https://ceos.org/meetings/uksa-methane-workshop/
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4. National governments and academia should support increased education in AI techniques as part of 
materials-science and related degree programs. 

5. Scientific publishers should ensure that research publications are fully compatible with AI-guided 
research synthesis methods, including retroactively converting historical publications.  

1) Nature Synthesis Editorial. Automate and digitize. Nature Synthesis 2, 459-459 (2023). 
10.1038/s44160-023-00354-y. 

Chapter 14 – Extreme Weather Response 
1. National governments, international organizations, and the private sector should invest in AI 

models that increase accuracy, improve the timeliness and reduce the cost of extreme weather 
event forecasts. They should also collaborate on ways to evaluate accuracy and to develop 
frameworks that promote long-term sustainability. 

2. National governments should: 

 continue collecting and publishing weather data as a foundational public service; 

 provide a base level of access for poorer communities and countries;  

 explore innovative programs to attract the necessary talent to lead public AI systems (this could 
include government-sponsored fellowships, additional compensation and opportunities for 
continued education); 

 integrate AI training into professional development programs for meteorologists and climate 
scientists working in public sector weather agencies; 

 ensure robust understanding of the limitations and opportunities of AI-assisted forecasting and 
early warning; and 

 promote and construct necessary infrastructure to disseminate forecasts and warnings 
effectively. 

3. National governments and international organizations should develop the capacity to build and use 
cutting-edge AI-based weather models as those models improve in the years ahead. Public-private 
partnerships are important for equity. National governments and international organizations should 
also support the expansion of AI-based early warning systems for extreme weather to underserved 
regions, ensuring equitable access and bridging the gap in global forecasting capabilities. 

4. National governments, international organizations, and the private sector should prioritize 
collection and integration of weather and climate data from the global south and provide technical 
support for adopting AI-based forecasting models to countries that have previously lacked 
advanced forecasting capabilities due to resource constraints. 

5. Research institutions and AI developers should prioritize creating AI models that are transparent 
and interpretable to help meteorologists and emergency responders gain trust in AI-generated 
weather predictions. 
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6. Emergency management and humanitarian aid agencies should implement AI-driven decision 
support systems to optimize response strategies during extreme weather events, such as 
evacuations or resource allocation, based on real-time data and predictions. 

Chapter 15 – Greenhouse Gas Emissions from AI 
1. AI developers, data center owners, energy experts, GHG emissions experts and standards 

organizations should establish robust methodologies and standards for reporting energy use and 
GHG emissions across the AI value chain. 

2. AI developers and data center owners should report energy use and GHG emissions associated with 
their AI workloads. 

3. Governments should adopt regulations that require AI developers and data centers owners to 
report their energy use and GHG emissions. 

4. AI developers should take steps to reduce the carbon intensity of their models, using the 
International Standards Organization’s (ISO’s) methodology for evaluating their models’ Software 
Carbon Intensity (SCI).1  

5. Data center owners should prioritize adoption of energy-efficient hardware for AI operations and 
optimize AI workloads based on carbon-aware computing strategies.  

6. Governments should promote and support policies that enable and incentivize data center owners 
to purchase low-carbon energy, including supporting new low-carbon power generation and grid 
expansion in regions with high concentrations of AI-driven data center growth. 

7. National governments, AI developers, data center owners and philanthropies should fund 
researchers to develop a set of scenarios to quantify the effects that AI could have on greenhouse 
gas emissions under a range of assumptions. These scenarios should combine quantitative models 
with expert consultations, rigorously exploring a range of possible futures. The Intergovernmental 
Panel on Climate Change (IPCC) should include these scenarios in a special report on AI to be 
released within two years.2  

8. All stakeholders should review and consider the dozens of other recommendations throughout this 
Roadmap to help reduce GHG emissions using AI tools. 

1) International Organization for Standardization (ISO). ISO/IEC 21031:2024 Information 
technology — Software Carbon Intensity (SCI) specification; Geneva, Switzerland, 
https://www.iso.org/standard/86612.html (2024). 

2) Amy Luers et al. Will AI accelerate or delay the race to net-zero emissions? Nature 628(8009), 
718–720 (2024). https://doi.org/10.1038/d41586-024-01137-x. 

Text Box: Data Center Water Use 
1. Data center operators and governments should collect and share data on water consumption to 

understand potential issues and determine risk. More and better data are needed to identify 
potential risks in terms of the magnitude and acuteness of community or environmental stresses. 

https://www.iso.org/standard/86612.html
https://doi.org/10.1038/d41586-024-01137-x
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2. Data center operators should explore potential pathways to reduce water consumption and 
mitigate risks. There are many promising, practical ways to manage water use and reduce total 
water consumption. The economic and technical viability of these options will vary by region. 
Especially in water stressed areas, data center operators should begin to track, review and explore 
options to responsibly and reasonably mitigate water consumption stresses and concerns. 

3. National and local governments should consider policy options, including mandatory water usage 
reporting, water efficiency standards, incentives for sustainable practices, water pricing 
mechanisms and water recycling mandates. 

Chapter 16 – Government Policy 
1. Governments should prioritize development of a climate-relevant data ecosystem. This should 

include the following:  

a. Governments should invest significant funds in data collection, curation and standardization. 
The climate-relevant data collected by governments should be easily accessible by all 
stakeholders. In developing climate-relevant data, governments should particularly focus on 
data-gathering from underrepresented regions and sectors, as well as on data types that have 
previously been unavailable or insufficient.  

b. Governments should adopt and promote data interoperability standards and invest in secure, 
scalable infrastructure for storing and disseminating climate-relevant data. Governments 
should also adopt clear data governance frameworks to ensure data privacy, security and 
ethical use.  

c. Governments should employ a combination of direct funding, low-interest loans, tax incentives, 
advanced market commitments and regulatory frameworks to help. 

2. Governments should help fund large-scale open-source foundational models tailored to addressing 
climate challenges. These models, in domains such as climate science, energy systems, food security 
and oceanography, could serve as the bedrock for a new generation of climate mitigation 
applications. By using existing open-source models and investing in new open-source models, 
governments can accelerate innovation, foster public-private partnerships and help develop 
solutions to pressing climate issues. International collaboration in funding and research will be 
essential to maximizing the impact of these models. 

3. Governments should incentivize AI applications that contribute to climate mitigation with (1) 
regulatory frameworks that prioritize climate-friendly AI; (2) financial incentives, such as grants, tax 
breaks and procurement preferences and (3) public recognition programs. In connection with these 
programs, governments should establish clear evaluation criteria to assess the climate impact of AI 
systems to help ensure that incentives are targeted effectively.  
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4. Governments should invest in education and training programs to develop a skilled AI workforce. 

This should include supporting AI research, curriculum development and upskilling programs for 

both students and professionals. 

5. In shaping policies and programs on AI and climate change, governments should seek input from 

and work closely with a wide range of stakeholders, including technology companies, energy 

companies, academia and civil society. 

6. Governments should facilitate knowledge-sharing and collaboration between experts in climate 

mitigation and experts in AI. Governments should use their convening power (by organizing 

roundtables, task forces, advisory bodies and hackathons) and other tools for this purpose. 

 

7. Governments should establish ethical guidelines for developing and deploying AI applications to 

help foster the trust and confidence in AI that will be important for using AI in climate change 

mitigation. These guidelines should address issues such as data privacy, bias, transparency, 

truthfulness and accountability. Governments should develop these guidelines in collaboration with 

industry, civil society and academia.  
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