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PREFACE 
Artificial intelligence (AI) is a hot topic. One business leader recently called it “the defining 
technology of our time.” Another said “It is difficult to think of a major industry that AI will not 
transform.”1 

Meanwhile countries around the world are struggling to respond to the challenge of climate change. 
Despite encouraging developments, including steep declines in the price of renewable power, global 
emissions of greenhouse gases keep rising. Scientists warn that heat waves, floods, droughts and 
severe storms will get far worse in the decades ahead unless we change course. 

Can AI help cut emissions of greenhouse gases? This roadmap explores that question. Our goal is to 
provide a useful resource for experts and non-experts alike. In Part I of the roadmap, we provide 
brief introductions to both AI and climate change. In Part II, we explore six areas in which AI is 
helping respond to climate change and could do much more. In Part III, we explore cross-cutting 
barriers, risks and policies. We finish with findings and recommendations, including the following: 

• AI could make significant contributions to climate mitigation. Areas of especial opportunity
include greenhouse gas emissions monitoring, the power sector, manufacturing, materials
innovation, the food system and road transport.

• Barriers to AI helping reduce greenhouse gas emissions include the lack of trained personnel
and access to high-quality data. All institutions with a role in climate change mitigation
should prioritize AI skills-development and explore ways to develop and share relevant data.

• Risks related to AI – including bias, privacy and safety issues – require careful attention when
AI is used to reduce emissions.

• Greenhouse gas emissions from computing infrastructure for AI are currently modest. The
amount of such emissions in the years ahead is highly uncertain.

• All government agencies with responsibility for climate change should create an Artificial
Intelligence Office with responsibility for assessing opportunities, barriers and risks with
respect to AI in all aspects of the agency’s mission.

The relationship between AI and climate change is a big topic. Among the questions we do not 
explore in this roadmap are (1) how AI could contribute to climate change adaptation (an important 
area for work and study) and (2) whether the broad societal forces that AI may unleash are more 
likely to help or hinder the response to climate change (a difficult question in light of the many 
uncertainties with respect to AI’s impacts in the years ahead). Instead, we aim to provide a resource 
that will make favorable outcomes more likely, pointing toward ways in which AI can contribute to 
climate solutions. 

1 “15 Quotes,” ai.nl (January 3, 2022). https://www.ai.nl/artificial-intelligence/15-quotes-from-technology-
leaders-about-artificial-intelligence-ai/ 
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This roadmap builds on the body of literature produced annually in connection with the ICEF 
conference. Previous roadmaps have addressed the following topics: 

• Low-Carbon Ammonia (2022)
• Blue Carbon (2022)
• Carbon Mineralization (2021)
• Biomass Carbon Removal and Storage (BiCRS) (2020)
• Industrial Heat Decarbonization (2019)
• Direct Air Capture (2018)
• Carbon Dioxide Utilization (2017 and 2016)
• Energy Storage (2017)
• Zero Energy Buildings (2016)

• Solar and Storage (2015)

This roadmap is a team effort. We are deeply grateful for the support provided by the ICEF 
Secretariat, the ICEF Steering Committee (including in particular its chair, Nobuo Tanaka), the New 
Energy and Industrial Technology Development Organization (NEDO), experts at the Institute of 
Energy Economics – Japan, and our design and copy edit team (including in particular Ms. Jeannette 
Yusko, Dr. Kathryn Lindl, Dr. Melanie Mendez and Ms. Cat Lee).  

The ICEF Innovation Roadmap Project aims to contribute to the global dialogue about solutions to 
the challenge of climate change. We welcome your thoughts, reactions and suggestions. 

David Sandalow 

Chair, ICEF Innovation Roadmap Project 
Inaugural Fellow, Center on Global Energy Policy, 
Columbia University 

https://www.icef.go.jp/pdf/summary/roadmap/icef2022_roadmap_Low-Carbon_Ammonia.pdf
https://www.icef.go.jp/pdf/summary/roadmap/icef2022_roadmap_Blue_Carbon.pdf
https://www.icef.go.jp/pdf/summary/roadmap/icef2021_roadmap.pdf
http://www.icef.go.jp/pdf/2020/roadmap/roadmap.pdf
https://www.icef-forum.org/pdf/2019/roadmap/ICEF_Roadmap_201912.pdf
https://www.icef-forum.org/pdf/2018/roadmap/ICEF2018_DAC_Roadmap_20181210.pdf
https://www.icef-forum.org/pdf/2018/roadmap/CO2U_Roadmap_ICEF2017.pdf
https://www.icef-forum.org/pdf/2018/roadmap/Energy_Storage_Roadmap_ICEF2017.pdf
https://www.icef-forum.org/pdf/2018/roadmap/ZEBZEH_Roadmap_ICEF2016.pdf
https://www.icef-forum.org/pdf/2018/roadmap/distributed_solar_and_storage-icef_roadmap_1.0.pdf
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EXECUTIVE SUMMARY 
Chapter 1 – INTRODUCTION TO ARTIFICIAL INTELLIGENCE 
Artificial intelligence (AI) is the science of making computers perform complex tasks typically 
associated with human intelligence. Modern AI relies on machine learning (ML)—a type of software 
in which algorithms detect patterns from large datasets without being explicitly programmed. This 
differs from traditional software, which requires explicit programming of domain knowledge. AI 
instead relies on implicit programming by using historical data and simulations to "train" models to 
extract patterns. 

Access to large, high-quality datasets is important for complex real-world applications of AI. These 
data can come from various public and private sector organizations. Tabular, time series, geospatial 
and text data are all commonly used in AI. Data must be properly measured, digitized and accessible 
for AI applications. 

The release of ChatGPT in November 2022 generated extraordinary public attention to AI. ChatGPT 
quickly became the most rapidly adopted product in human history, with more than 100 million 
users by January 2023. The website now receives roughly 1.8 billion visits per month. Large language 
models (LLMs), such as ChatGPT, are one type of AI system.  

Chapter 2 – INTRODUCTION TO CLIMATE CHANGE 
Atmospheric concentrations of heat-trapping gases are now higher than at any time in human 
history. This is changing the Earth’s climate. July 2023 was the hottest month ever recorded. The 
nine warmest years ever recorded have been the last nine years. Severe storms, droughts, floods and 
wildfires—all made more likely by global warming—have caused extraordinary damage in recent 
years. Sea-level rise threatens coastal cities around the world. 

The Paris Agreement—adopted by over 190 nations in 2015—calls for holding the global average 
temperature increase to well below 2 °C (3.6 °F) above pre-industrial levels and pursuing efforts to 
limit the increase to 1.5 °C (2.7 °F). The world is not on a path to achieve these goals. Policies 
currently in place would result in a global average temperature increase of roughly 3 °C (5.4 °F) by 
2100, and many of these policies are not being fully implemented. 

AI is making important contributions to scientific understanding of climate change. AI is improving 
climate-model performance, providing more advanced warning of extreme weather events and 
helping attribute extreme weather events to the increase in heat-trapping gases in the atmosphere. 
AI’s contributions to climate science will grow in the years ahead. 

Chapter 3 – GREENHOUSE GAS EMISSIONS MONITORING 
Good information on the sources of greenhouse gas (GHG) emissions is essential for responding to 
climate change. AI is helping to significantly improve such information by analyzing vast amounts of 
data from earth-observation satellites, airplanes, drones, land-based monitors, the Internet of Things 
(IoT), social media and other technologies. 
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AI has been particularly important for improving methane-emissions monitoring. AI helps to (1) 
process data from methane sensors at scale, (2) combine input from multiple satellites to overcome 
each particular satellite’s limitations and (3) integrate satellite information with data generated by 
other types of sensors to build multi-scale monitoring and reporting systems. 

AI is being used to better understand the sources of CO2 emissions as well. AI algorithms can be 
trained to survey the world’s vegetation at high spatial resolution and to precisely measure the 
amount of biomass carbon sequestered in forestry and other forms of vegetation, at scale and at a 
negligible cost. 

Barriers to using AI for emissions monitoring include lack of AI literacy, conflicting data, sovereignty 
concerns and uncertain financial models for providing AI-enabled GHG emissions data. Measures to 
help address these barriers include promoting AI literacy, establishing best practices and 
mechanisms to validate AI-enabled GHG emissions data, setting up one or more global “owners” of 
AI-enabled GHG emissions data and elevating AI for climate in international dialogue and 
negotiations. 

Chapter 4 – POWER SECTOR 
More than a third of global carbon dioxide (CO2) emissions come from the power sector. AI is 
becoming an essential part of this sector due to the power grid’s complexity and rapid growth in 
power sector data. AI can help with scenario development, short-term predictions based on time-
series data, optimization problems and systems integration. 

AI has the potential to make decarbonization of the power sector cheaper, faster and smoother. 
Opportunities abound in generation infrastructure, transmission and distribution networks, end-use 
sectors and energy storage. Examples include: 

• determining the optimal size and location of solar- and wind-power projects; 
• predicting weather relevant to solar and wind generation; 
• improving fault detection, outage forecasting and stability assessments on distribution grids 

and 

• facilitating deployment of demand response and vehicle-to-grid programs 

Several barriers limit adoption of AI for decarbonizing the power sector. AI models and methods are 
not yet sufficiently robust or well-developed for widespread deployment, standards for performance 
evaluation are lacking, and knowledgeable workers are in short supply. Security risks must be studied 
and properly addressed before deploying AI for most grid infrastructure. 

Chapter 5 – MANUFACTURING SECTOR 
The manufacturing sector accounts for roughly one-third of global GHG emissions. AI has significant 
potential to help decarbonize manufacturing by optimizing existing industrial processes and 
operations in cost-effective ways.  

For example, AI can play an important role in steelmaking with electric arc furnaces—an important 
decarbonization technology in which steel is made with recycled scrap metal instead of coal. AI can 
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help address the variability in each batch of scrap metal, recommending optimal production settings 
to adapt to the variability. Using AI tools, one Brazilian steel manufacturer achieved an 8% reduction 
in alloy additive consumption using AI, cutting both costs and emissions. 

More broadly, AI can help decarbonize manufacturing by enabling manufacturers to adapt to 
production issues faster and better, avoid past mistakes by leveraging historical data, improve 
production yields, promote recycling and circularity by adapting to variable recycled feedstocks, 
minimize energy consumption, adopt alternative energy sources and optimize manufacturing 
schedules and supply chains to reduce logistical overhead. 

Chapter 6 – MATERIALS INNOVATION 
Advanced materials with special properties are essential for decarbonizing many parts of the 
economy. Products including catalysts, battery anodes, solar photovoltaics, wind turbine blades, 
refrigerants, superconductors, carbon-capture sorbents and high-strength magnets depend on 
advanced materials.  

Historically, advanced materials have been discovered through accident or tedious, expensive trial 
and error. Advances in computing power and material-science theory enabled a transition to a more 
computational basis for materials discovery several decades ago. However, the methods for 
identifying potentially valuable novel materials through computation require large computing 
resources and are still too slow to fully meet the needs of materials innovation for a decarbonized 
economy. 

Computational materials science has begun using AI methods, and they are already having an 
important impact. In some cases, AI models can replace fully science-based computations, greatly 
speeding up processing times. AI can also help interpret results of material-characterization 
experiments, enabling rapid, high-throughput testing of advanced materials candidates. Natural-
language AI can scour the vast materials-science technical literature, summarizing thousands of 
published research articles to enable rapid, accurate literature reviews and surface harmonized 
process steps for materials production. Most recently, generative AI methods have begun to suggest 
entirely novel classes of advanced materials that had not previously been envisioned as relevant to 
emissions-reduction applications. While these advances are highly promising, much better 
integration between materials science and AI research is still needed to realize the full potential for 
climate mitigation. 

Chapter 7 – FOOD SYSTEMS  
Food systems—including food production, processing distribution, consumption and disposal—are 
critical to health and livelihood worldwide. Food systems are responsible for more than 30% of global 
GHG emissions. Climate change, in turn, has a significant impact on food systems.  

AI has significant potential to help reduce GHG emissions in food systems, including by (1) integrating 
data from multiple sources—such as soil sensors and satellites—to recommend fertilizer application 
schedules that mitigate nitrous oxide emissions while maximizing crop yields; (2) anticipating future 
needs for precision fertilizer applications under a range of projected climate conditions; (3) analyzing 
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data on biomass characteristics, growth rates and carbon-sequestration potential to optimize 
feedstocks for biomass carbon removal and storage (BiCRS); (4) increasing renewable energy 
generation by optimizing land use for multiple purposes; (5) forecasting pest and disease pressure; 
(6) developing alternative protein products, which have a much lower carbon footprint than animal-
sourced foods, and (7) reducing food loss and waste through intelligent harvest-timing to prevent 
food spoilage.  

AI provides a set of complementary tools for reducing food-system emissions, not a solution in itself. 
Proper use of AI technologies should be grounded in scientific knowledge, physical constraints, well-
defined public-policy objectives, ethical considerations and a nuanced understanding of the complex 
operations of food-system stakeholders. 

Chapter 8 – ROAD TRANSPORT 
Road transport is a critical part of the global economy. Current modes of road transport rely heavily 
on fossil fuels, producing roughly 18% of global energy-related CO2 emissions. 

AI has significant potential to help reduce GHG emissions from road transport. AI can play an 
important role in several important areas including (1) batteries, (2) sustainable biofuels, (3) 
intelligent transportation systems and (4) shifts toward modes of transportation that emit less 
carbon. 

While the potential of AI in revolutionizing road transportation is immense, several barriers and risks 
must be addressed. Barriers include a lack of data, the absence of uniform standards for data and a 
shortage of personnel with training in AI. Risks include bias, invasion of privacy and increases in GHG 
emissions caused by deployment of autonomous vehicles, which are likely to increase total vehicle 
miles traveled. 

Chapter 9 – BARRIERS 
Five groups of barriers impede the use of AI for climate change mitigation: data, people, 
computation, cost and institutions. 

Data and people barriers are among the most significant. AI depends on available, accessible and 
standardized data; such data are often lacking. The shortage of trained personnel can also be a 
significant barrier. AI for climate mitigation requires skilled AI developers, collaboration between 
those developers and experts in diverse fields (such as atmospheric chemistry, materials science, 
electrical engineering, finance and political science), and users who are broadly educated on the 
basics of AI.  

Other important barriers can include a lack of computing power to train, tune and run AI models; a 
lack of financial resources; and a lack of leadership attention or clear AI policies within organizations.  
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Chapter 10 – RISKS 
Risks from using AI can include bias, invasion of privacy, security, safety and increased GHG 
emissions.  

Bias-related risks when using AI for climate mitigation include prioritizing certain groups due to 
differences in data availability. Privacy-related risks include unauthorized data leaks to third parties, 
personal identification and even surveillance. Security risks can arise when AI systems expand the 
attack surface for hackers beyond that found in conventional software programs. Safety risks can be 
serious when AI systems fail to work as intended or have unintended consequences. Security and 
safety risks are especially acute if AI is used for real-time decision-making (such as in operating 
factories or the electric grid).  

GHG emissions from AI computing operations are currently modest—significantly less than 1% of the 
global total. Better data collection and assessment methodologies are needed to provide a more 
precise estimate with high confidence. The amount of future GHG emissions related to AI is highly 
uncertain. In some scenarios, GHG emissions from AI decline in the years ahead. In other scenarios, 
such emissions increase significantly.   

Chapter 11 – POLICY 
Government policies with respect to AI are evolving rapidly. Policymakers around the world are 
considering a range of topics with respect to AI, including security, bias, privacy, job displacement 
and international competitiveness.  

Very few policies that specifically address the use of AI for climate mitigation have been adopted to 
date. Those policies fall into two broad categories: (1) policies that promote the use of AI for climate 
mitigation and (2) policies that manage risks related to the use of AI for climate mitigation. 

Governments could promote the use of AI for climate mitigation by addressing barriers related to 
data, people, computing power, cost and institutions. Such policies could include funding collection 
of climate-related data, encouraging or requiring standardization and harmonization of climate-
related data, launching AI skills-development programs, making computing infrastructure available 
for projects that use AI for climate change mitigation, creating AI offices within government 
ministries, and using international institutions—such as the Clean Energy Ministerial and World 
Meteorological Organization—as platforms for international cooperation on using AI for climate 
mitigation. 

Governments could help manage risks related to the use of AI for climate mitigation, including bias, 
privacy and increased emissions. Such policies could include standards requiring diverse and 
representative data sets for AI models; standards with respect to transparency in the development of 
AI models; legal frameworks that hold entities accountable for biased outcomes resulting from AI 
applications; requiring that privacy considerations be expressly integrated in the design of AI models; 
establishing independent oversight boards responsible for monitoring privacy protections related to 
AI and climate mitigation; investing in research and development on energy-efficient AI algorithms 
and hardware; and promoting low-carbon data centers.  
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Chapter 12 – FINDINGS AND RECOMMENDATIONS 

FINDINGS 
1. AI is currently contributing to climate change mitigation in important ways. 
2. AI has the potential to make significant additional contributions to climate change mitigation 

in the years ahead.  
3. AI is not a panacea when it comes to climate change.  
4. The lack of trained and experienced personnel is a critical barrier to using AI for climate 

mitigation.  
5. The lack of access to high-quality data is a critical barrier to using AI for climate mitigation.  
6. Other barriers to using AI for climate mitigation include cost, lack of available computing 

power and institutional issues. 
7. Significant resources—by governments, corporations and other stakeholders—will be 

required for AI to reach its potential in helping mitigate climate change.  
8. General risks of using AI include bias, invasion of privacy and security issues. These risks also 

exist when using AI for climate mitigation.  
9. GHG emissions from computing infrastructure for AI are currently modest—significantly less 

than 1% of the global total.  
10. The amount of future GHG emissions from AI computing infrastructure is highly uncertain.  

RECOMMENDATIONS 
1. AI tools should be integrated into many aspects of climate change mitigation.  
2. AI skills-development and capacity-building should be a priority in all institutions with a role 

in climate mitigation.  
A. Educational institutions at all levels should offer courses relevant to AI.  
B. Governments and foundations should launch AI-climate fellowship programs.  
C. Government agencies with responsibility for climate issues should regularly review their 

staffs’ AI capabilities.  
D. All organizations working on climate mitigation should require minimum AI literacy from 

a broad cross-section of employees.  
3. Governments should assist in developing and sharing data for AI applications that mitigate 

climate change. 
A. Governments should systematically consider opportunities to generate and share data 

that may be useful for climate mitigation.  
B. Governments should establish policies to promote standardization and harmonization of 

climate and energy-transition data.  
C. Governments should establish climate-data task forces composed of key stakeholders 

and experts.   
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4. Companies with datasets relevant to climate change mitigation should consider sharing 
portions of those datasets publicly.  

5. Governments should provide substantial funding for developing and applying AI tools for 
climate mitigation.  
A. Government funding for AI in the climate area should focus on emissions-reduction 

potential, not just new AI methods.  
B. Governments should help increase the availability of computing power for climate 

change–related AI projects.  
6. All government agencies with responsibility for climate change, including environment and 

energy ministries, should create an Artificial Intelligence Office, with responsibility for 
assessing opportunities, barriers and risks with respect to AI in all aspects of the agency’s 
mission.  

7. Electric utilities should be incentivized to deploy AI, with regulated returns for investments in 
AI and other tools.  

8. Governments should launch international platforms to support cooperative work on AI for 
climate change mitigation.  
A. One or more member countries should launch a Clean Energy Ministerial initiative on AI 

and climate mitigation.  
B. The UN Framework Convention on Climate Change (UNFCCC), International Energy 

Agency (IEA) and Food and Agriculture Organization (FAO), among other organizations, 
should build AI-for-climate issues centrally into their work programs. 

C. One or more global organizations should be tasked with helping to reconcile any 
conflicting AI-enabled data on GHG emissions.  

9. Governments should work to minimize GHG emissions from AI’s computing infrastructure.    
10. Avoiding unfair bias should be a core, high-priority principle guiding development of all AI 

tools for climate change mitigation.  
11. Governments should address privacy risks related to AI-climate programs with data-

protection regulations, cybersecurity standards, oversight boards and techniques that make 
personal data less identifiable. 
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Chapter 1: 

INTRODUCTION TO ARTIFICIAL INTELLIGENCE 
Alp Kucukelbir 

Artificial intelligence (AI) is part of our everyday lives. Email providers use AI to filter spam. 
Postal services apply AI to route hand-written envelopes. Technology companies leverage 
AI to identify faces in photographs, while radiologists reach for AI to interpret medical 
scans. Economists use AI to forecast elections, and digital retailers turn to AI to optimize 
prices.1, 2  

The release of ChatGPT in November 2022 generated extraordinary public attention to AI. 
ChatGPT quickly became the most rapidly adopted product in human history, with more 
than 100 million users by January 2023. The website now receives more than 1.5 billion 
visits per month.3, 4 This increased attention has led to questions about how AI could help 
address major global challenges, including climate change—the topic of this report. 

A. What is AI? 
AI is the science of making computers 
perform complex tasks typically 
associated with human intelligence. 
Modern AI relies on a branch of 
computer science called machine 
learning (ML). ML refers to a set of 
algorithms that detects patterns from 
large and sometimes messy data 
without explicit programming (i.e., 
without a human-crafted description 
of each pattern). This is a task often 
associated with human learning—for 
example, learning to walk, speak or 
identify objects.  

How does AI differ from traditional computation? Consider a computer program that plays 
chess. The traditional approach to building such an algorithm involves explicitly 
programming the rules of chess, encoding basic principles of good game play, and 
specifying a method to search over all possible moves to pick the best one. Even in a game 
as seemingly simple as chess, this is an enormous task for a computer—the number of 
chess positions is about the same as the number of atoms on Earth.5 (For the curious, that 
is about 1,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000 

 
Figure 1-1. A visualization of a deep neural network, a type of AI 
model that powers popular AI systems such as ChatGPT. 
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positions.) No existing computer, even the most powerful supercomputing clusters, can 
efficiently play chess this way. 

Now consider an AI approach to playing chess. The core idea is to replace human input on 
what constitutes good strategy with a system that only uses the rules of the game to play 
against itself to find good strategies. Leveraging clever mathematics that significantly 
reduce the need to search over all possible moves, an AI system can efficiently simulate 
games against itself millions of times. This repeated simulation enables the AI system to 
“learn” the principles of good play, in a way that exceeds the ability of human 
programmers to explicitly encode them in software. This approach to AI uses branches of 
ML known as deep neural networks (see Figure 1-1) and reinforcement learning, which are 
ideally suited to problems where simulation plays a prominent role.6 Table 1 summarizes 
the key difference between AI and traditional software. 

Supervised and unsupervised ML are two other ways to build AI systems—both rely on 
historical data to “learn” patterns.  

• Supervised learning requires historical data with labels or explicit targets. One 
common example includes handwritten digit recognition—used by many postal 
services around the world—which pairs many thousands of scanned pictures of 
written digits with their corresponding number to “train” the AI system.  

• Unsupervised learning only requires historical data, without any corresponding labels. 
The AI system is trained to search for patterns and associations hidden in the data 
itself. This form of AI is commonly used in recommendation engines, which can 
suggest movies you might like based on movies you have previously watched and 
historical patterns of the likes and dislikes of other people watching similar movies. 

Table 1: AI differs from traditional software in its requirements and its outputs.  

 

 Traditional software Artificial intelligence (AI) 

Requirements No historical data needed Historical data or simulator 

Explicit programming of domain 
knowledge 

Implicit programming of expectations 
of patterns from data 

No “training” needed (everything is 
explicitly programmed) 

Need to “train” the AI algorithm to 
extract patterns 

Outputs Deterministic results Statistical results: can sometimes 
make mistakes 

Can efficiently solve simpler problems Can offer solutions to more complex 
problems 
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B. How does AI work? 
With AI, there is no longer a need to explicitly program every detail of how to solve a 
problem. Instead, we rely on data, a model and simulation. 

Data. To replace explicit programming, supervised and unsupervised AI methods require 
historical data—observations and measurements that pertain to the problem at hand. In 
postal routing, these are images of handwritten letters and digits mapped to their correct 
digital representations. In facial recognition, these are many photographs of the same 
individual, labeled with their name. Access to high-quality data is essential for AI training. 
More data directly improves the odds of finding useful patterns—up to a point, after which 
more data provide diminishing benefits. (In reinforcement learning, data sets are typically 
simulated.) 

Model. AI methods require implicit programming of the types of patterns that lie hidden in 
data. This part of an AI program is called the “model”—a mathematical description of 
pattern types expected in data. For example, if a sequence of chess moves appears 
frequently in winning games, the model should pick this up as a successful strategy. If some 
people write the letter “t” with a straight line and others with a curve at the bottom, the 
model should identify both as valid forms of a “t.” The scientific community has been 
steadily developing increasingly sophisticated models over the past several decades. 

Computation. Models by themselves are useless—they provide nonsense answers until 
they are “trained” on data. Collectively, the various statistical approaches to achieving this 
goal and the hardware that enables such algorithms fall under the term “computation”—a 
set of mathematical methods for using a model to find and evaluate the quality of patterns 
(“training”), while simulating multiple scenarios. In chess, this involves making thousands of 
clever hypothetical moves to evaluate a particular strategy. In postal routing, this involves 
quantifying the uncertainty in differentiating a “3” from an “8” to recognize such digits 
reliably. Computation integrates the idea 
that AI programs do not contain 
explicitly programmed rules; rather, 
computation is the mechanism by which 
AI unravels and leverages implicit 
patterns from data (Figure 1-2). 

AI has been steadily improving since its 
inception in the early days of computing. 
A combination of better access to rich 
data sources, better models for complex 
applications and better computing 
technology (software and hardware) for 
simulation has led to AI’s proliferation. 

  

 
Figure 1-2. AI systems work by using a model to identify patterns 
in data. Models by themselves are not useful and must be 
“trained” on data through computation. Computation integrates 
the idea that AI systems do not contain explicit information, 
rather computation is the mechanism by which AI unravels and 
leverages implicit patterns from data. 
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C. What is AI capable of? 
While chess contrasts AI to traditional software, it does not fully capture AI’s capabilities; a 
chess program is effectively playing a game. To dive deeper into a practical discipline that is 
evolving with AI,7 we turn to radiology—a branch of medicine in which specialist doctors 
use medical imaging (data) to diagnose and treat diseases. 

Radiologists are experts at pattern recognition. After years of training, these doctors spend 
much of their time detecting anatomical and physiological deviations from blurry and noisy 
medical scans—which are themselves proxies for tissue and biology, not the real thing 
itself. AI can provide an important boost to performing this task.  

In cancer medicine, for instance, medical imaging data sets with expert-verified labeling of 
the location and type of tumors are increasingly available. Armed with these data sets, AI 
systems can be trained to detect the patterns in the medical images that expert humans 
have labeled as a tumor. Once trained, these systems can be directed to examine new 
medical images, searching for similar patterns in the data that would imply the existence of 
a tumor. 

Once a tumor has been identified, an AI system can begin to simulate various treatment 
scenarios. How big would the tumor be after one session of radiotherapy? How about after 
the second? What if the parameters of the radiotherapy are slightly different? Do we end 
up with a better outcome? These are the types of questions radiologists can explore using 
AI to assist them in designing a treatment plan, which they execute using tested traditional 
software that operates medical equipment. The AI outputs a series of outcome 
probabilities, which themselves recommend treatment actions. 

AI technologies not only help radiologists in their practice but also help push the scientific 
boundaries of their field. AI is enabling radiologists to process and search for patterns 
across huge databases, paving the way toward personalized treatments. This movement is 
so significant, it has its own name: 
radiomics.8 

The rise of AI in radiology has neither 
usurped traditional software nor 
displaced its practitioners. But it 
highlights a particular type of AI 
success story. When AI is combined 
with traditional software and human 
domain experts, the results are 
stronger than what AI can produce 
alone. Keeping “humans in the loop” 
is key to using AI to solve many real-
world problems (Figure 1-3). 

  

 

Figure 1-3. Keeping "humans in the loop" is essential to using 
AI to solve real-world problems. 
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D. What kind of data does AI need? 
Unlike traditional software, AI requires access to historical data. These data can come in 
many different forms and be hosted by different types of entities. The availability and 
accessibility of these data are both important considerations for their potential role in AI 
systems. 

(i) Data types 
AI systems can work with many different data types. 

• Tabular data. Measurements that follow a generic row and column structure. Often 
associated with spreadsheet applications, tabular data can represent multiple 
measurements (rows) of a set of things (columns). Common across many 
applications. 

• Time-series data. Measurements that have a time ordering and can be plotted over 
time. While small time-series data sets can also be considered tabular, they are often 
stored in database software that can handle large volumes of data. Common in signal 
processing (audio, remote sensing), finance and econometrics. 

• Geospatial and raster data. Measurements that have a spatial ordering and can often 
be viewed as images. This kind of data no longer looks tabular; they are often stored 
as files or in special databases. Common in satellite imaging and climate science. 

Box 1-1  
LARGE LANGUAGE MODELS AND THE  
FUTURE OF AI 
Large language models (LLMs), such as ChatGPT, are one type of AI system. LLMs analyze vast 
amounts of text data and can string together responses to queries by predicting the most likely 
next word in a sentence. The user interface is similar to conversing with a human,  
expanding the potential user base for such technology to anyone who can type  
a question into a computer. 

The success of these systems has revived questions around the future  
capabilities of AI. ML and AI experts are divided on the transformational  
potential of LLMs and the best balance between rapid innovation and  
caution. 
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• Network data. Measurements that come with a graph of nodes and edges. This kind 
of data is often stored in special graph databases. Common in power systems and 
social networks. 

• Text and sequential data. Measurements that comprise sequences of symbols, such 
as words. This kind of data is typically stored as text files but can also be encoded in 
databases. Common in language applications. 

 

 

(ii) Data hosts and owners 
Data that can be used for AI applications may be hosted by different organizations and 
entities. Public sector data hosts include government agencies, state-owned enterprises, 
public universities, national research laboratories and multilateral institutions. Private 
sector data hosts include for-profit companies, not-for-profit organizations (e.g., private 
universities, think tanks, private research laboratories) and individuals. For both public 
and private sector organizations, data can have varying degrees of availability and 
accessibility. 

(iii) Data availability 
The term “data” loosely refers to some amount of measured information. But for AI 
applications, the way in which data are measured and digitized matters (Figure 1-4). 

• Measured and well-digitized. Properly designed and deployed instrumentation will 
provide high-quality data that can power AI applications. Such data typically 
exhibit a high degree of spatial and temporal resolution, covering relevant areas in 
sufficient precision over an appropriate number of experiments and amount of 

Box 1-2  
HOW MUCH DATA IS NEEDED FOR AI? 
The answer to this important question depends on the “resolution” of the problem AI is solving. 
In chess, the number of moves in each game in a data set has no effect—the  
“resolution” of the task is at the game-level. The more games, the better.  
In time-series tasks, if a common event is being studied, a few days of data  
may be sufficient. But for rare events, years if not decades of historical  
measurements will be needed. In general, data size is not a useful  
metric—the amount of data to drive successful AI applications can  
range from megabytes9 to terabytes.10 
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time. Examples include industrial production data, high-fidelity weather data and 
fine-resolution satellite data. 

• Measured but poorly digitized. Data where instrumentation is either insufficient or 
improperly configured may not be able to drive successful AI applications. These 
cases can occur in underfunded application areas (biodiversity studies), rapidly 
changing application areas (agriculture) and broader geographies (weather data in 
developing nations). For example, digitizing the monthly total energy usage at the 
building-level is not sufficient to drive AI-based individual household energy 
optimization. 

• Measured but not digitized. Measurements that could support AI applications may 
be measured but not digitized. Digital instruments without connectivity, analog 
instrumentation and manual observations constitute much of this category. 
Examples include digital thermometers without internet connectivity, analog 
pressure gauges and visual observations of the weather. 

• Not measured. Facts and quantities that would be required to drive an AI 
application may not be measured at all. In these situations, the ideal outcome is to 
leapfrog to measured and well-digitized data. 

(iv) Data accessibility 
Data that are measured and (ideally well) digitized may have varying levels of 
accessibility (Figure 1-4). 

• Open-source data. These are the most easily accessed data. Open-source data sets 
are often hosted on public websites or other public data services. While open-
source data sets are widely accessible, they may be subject to licensing9 
agreements that limit their use. Such data may also lack the specificity required in 
AI applications, as they may have been anonymized to protect individual privacy or 
trade secrets. Examples include government databases, academic data 
repositories and data sets shared for data-science competitions. 
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• Data at cost. These are data that are governed by some sort of usage agreement at a 
cost dictated by their host. Such data are often high-quality and specific to 
application areas and may also be governed by additional licensing agreements. 
Examples include imaging data sold by satellite-operating corporations, curated data 
for self-driving vehicle development and transportation data from shipping 
corporations. 

• Internal data. These data are kept by their hosts to be used internally. Such data are 
typically proprietary, containing confidential or private information. Examples include 
industrial production data, material-science research and development records, and 
GPS location data at the individual level. 

• Inaccessible data. These data are generated but not stored. Such data are often 
temporarily created by computer programs and used in some way. Derived results 
may be stored, but the raw data are frequently discarded. Examples include physical 
system simulators and intermediate data used in the processing of other data. 
Inaccessible data prevents AI development. 

E. Why is AI developing so rapidly? 
The speed and scale of recent AI development and deployment are remarkable. 
Improvements in computational technology and exponential reductions in cost are fueling 
larger and more complex AI systems.10 The sharing of pre-trained models has also lowered 
costs by enabling transfer learning instead of building AI systems from scratch. These 

 
Figure 1-4. Data availability and accessibility are key aspects of enabling AI applications. The ideal zone for AI 
development relies on accessible, measured and well digitized data. 
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decreasing costs are enabling more widespread use of advanced AI like large language 
models for chatbots.  

F. Further reading 
There is a vast literature on AI, including many books and articles introducing computation, 
ML and AI to non-experts. The following sources may be helpful: 

• New York City Mayor’s Office, AI Primer (2021) 
• Silver, N., The Signal and the Noise: Why So Many Predictions Fail—but Some Don't 

(Penguin Publishing Group, 2012) 

• Pearl, J., Mackenzie, D., The Book of Why: The New Science of Cause and Effect 
(Penguin Books Limited, 2018) 

• Christian, B., Griffiths, T., Algorithms to Live By: The Computer Science of Human 
Decisions (Henry Holt and Company, 2016) 

The following textbooks may be helpful to those seeking additional technical depth in AI 
and ML: 

• Kevin P. Murphy, Probabilistic Machine Learning: An introduction (MIT Press, 2022) 
• Moritz Hardt, & Benjamin Recht, Patterns, predictions, and actions: Foundations of 

machine learning. (Princeton University Press 2022) 

• Russell, S., Russell, S., & Norvig, P., Artificial Intelligence: A Modern Approach. 
(Pearson, 2020) 

• Sutton, R. S., Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018) 
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CHAPTER 2:  

INTRODUCTION TO CLIMATE CHANGE 
David Sandalow, Trishna Nagrani and Julio Friedmann 

A. Climate change background 
Concentrations of heat-trapping gases in the atmosphere are now higher than at any time in human 
history.1 This is changing the Earth’s climate.2 (See Figures 2-1 and 2-2.) 

The Earth’s average global temperature has risen by at least 1.1 °C (1.9 °F) since 1880.3 (See Figure 2-
3.) Based on global average temperatures: 

• July 6, 2023 was the hottest day ever recorded.4 

• July 2023 was the hottest month ever recorded.5  
• The nine hottest years on record are the past nine years.6  

The principal heat-trapping gases 
are carbon dioxide (CO2), methane 
(CH4), nitrous oxide (N2O) and 
fluorinated gases (such as HFCs and 
SF6). (These are commonly called 
greenhouse gases or GHGs. See 
Figure 2) Carbon dioxide is 
responsible for roughly 76% of the 
warming impact of GHGs globally. 
Methane is responsible for roughly 
18%, nitrous oxide for 4% and 
fluorinated gasses for 2%.7 

Human activities are the principal 
cause of the buildup of GHGs in the 
atmosphere.1 Human activities are 
responsible for more than 50 Gt 
CO2e of emissions each year—an 
increase of roughly 40% since 
1990.8 Those activities include 
burning fossil fuels (coal, oil and gas), land use and land-use change, and lifestyles and patterns of 
consumption and production.1 Roughly 34% of global GHG emissions come from electricity and heat 
production, 24% from industry, 22% from agricultural, forestry and other land use, 15% from 
transport and 5% from buildings.7 

  

 
Figure 2-1. Greenhouse Effect. 
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Impacts of a changing climate are being felt across the globe.  

• Storms, heat waves and droughts have increased in frequency and intensity in recent 
decades.9, 10 

• Warming air temperatures and droughts made more likely by climate change have directly 
contributed to increased fire risk in many parts of the world. Changes in the climate over the 
past 30 years are associated with a doubling of extreme fire weather conditions in California.11  

• Between June and August 2022, Pakistan experienced unprecedented floods, which affected 
33 million individuals. Over 1,700 lives were lost and more than 2.2 million houses were 
destroyed or damaged.12 

Billions of people face extraordinary risks unless the buildup of heat-trapping gases in the 
atmosphere slows and then reverses in the decades ahead.13 Those risks include even more severe 
and frequent storms, floods, droughts and heat waves, as well as sea-level rise.14 One study found 
roughly a dozen locations across the Mediterranean and Middle East temperatures are likely to reach 
50 °C every year in the latter part of this century. Such temperatures were extremely rare or 
impossible in these locations in the pre-industrial world.15 

Climate change is expected to increase heat-related mortality rates and the incidence of lung and 
heart disease associated with poor air quality. Higher temperatures and more frequent flooding 

 
Figure 2-2. Carbon dioxide concentrations for past 800,000 years. Source: NASA, Global Climate Change, Vital Signs 
of the Planet, Carbon Dioxide, https://climate.nasa.gov/vital-signs/carbon-dioxide/ 
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events caused by climate change 
contribute to the spread of 
infectious and vector-borne 
communicable diseases such as 
dengue, malaria, hantavirus and 
cholera.16 

In 2015, more than 190 nations 
adopted the Paris Agreement, 
which calls for “holding the 
increase in global average 
temperature to well below 2 °C 
(3.6 °F) above pre-industrial 
levels” and “pursuing efforts to 
limit the temperature increase to 
1.5 °C (2.7 °F) above pre-industrial 
levels.”17 However, policies currently in place around the world would result in a global average 
temperature increase of 2.9 °C (5.2 °F) by 2100, and many policies to limit emissions are not being 
fully implemented.18 The world is not on a path to meet globally-agreed climate change goals. 

B. Contributions of artificial intelligence to climate science 
Artificial intelligence (AI) is making important contributions to the scientific understanding of climate 
change. While AI applications are still in relatively early stages of development, the progress to date 
suggests real opportunity for better monitoring of anthropogenic climate impacts, better 
understanding of how the Earth’s climate is likely to evolve and better predictions of climate impacts.  

(i) Improving climate model performance 
The best scientific understanding of climate dynamics and forecasts of climate impacts are based on 
computer simulations of complex climate models. To validate these simulations, their results are 
compared across models (“model intercomparison”) and to historical actual weather data 
(“hindcasting”). AI can help improve this comparison process, identifying biases in specific models 
and extracting the most useful physical results from increasingly massive amounts of climate model 
output data.19  

AI can also complement conventional physics-based climate modeling in hybrid approaches, 
dramatically reducing the need for certain very intensive computations20 or improving the resolution 
of model outputs.21 In some cases, AI can analyze the voluminous output of high-resolution climate 
models and assess potential biases in their predictions. A Stanford study using AI to analyze maps of 
temperature anomalies, for example, suggested that climate models underestimate the average rate 
of warming and that temperature increases are likely to exceed 1.5 °C by 2030–2035.22 Already, AI 
has improved both the pre-processing23 and post-processing24 of climate models and numerical 
weather prediction.  

 
Figure 2-3. Global average temperatures 1880-2022. Source: NASA Global 
Climate Change, Vital Signs of the Planet, Carbon Dioxide, 
https://climate.nasa.gov/vital-signs/carbon-dioxide/ 
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A potential drawback of incorporating AI into climate simulations is less reproducibility (meaning that 
calculations cannot necessarily be repeated and arrive at essentially identical results). The complexity 
and probabilistic nature of some AI and machine learning (ML) techniques make this more 
challenging.25 

(ii) Improving the understanding of climate processes and feedbacks 
The ability of AI to ingest and interpret immense volumes of climate and weather data has helped 
illuminate natural processes and important hidden feedbacks within the climate system. For 
example, one study identified the role of US Midwestern precipitation in modulating North Atlantic 
salinity.26 Another AI-driven analysis of river floods illustrated that data-driven, empirical modeling 
using AI could perform as well as science-based simulations in many situations.27 AI can also reduce 
uncertainties in certain key climate drivers; for example, a recent study improved the understanding 
of the interactions between aerosols and clouds, which has long been a challenge for climate models 
to accurately represent.28 

(iii) Providing more advanced warning for extreme weather 
Already, AI is beginning to improve the weather forecasts associated with extreme events, providing 
accurate, near-term advanced warning in critical contexts.29 This work has made major strides in the 
past two years and could ultimately transform climate adaptation responses. Some of the most 
crucial areas in which this AI-enabled “nowcasting” (within 6 hours) capability are being applied 
include extreme precipitation30 and extreme wind speeds,31 with additional work on predicting 
extreme heat over timescales of days to weeks.32  

(iv) Attributing extreme events to human influence 
Climate attribution is a rapidly changing field, and understanding how climate change leads to 
extreme events is important for governments, companies and public stakeholders. AI has already 
provided insights into human attribution around specific phenomena and mechanisms. These include 
river flooding in Europe,33 tropical cyclone intensity,34 growing period frost occurrence35 and many 
more. New organizations and government programs like Europe’s XAIDA36 are dedicated to this 
important task. 

(v) Revealing additional climate drivers 
The ability of AI to analyze visual and numerical data for patterns has greatly improved the 
understanding of certain man-made climate drivers. For example, AI-based analysis of satellite data 
from the National Aeronautics and Space Administration (NASA) revealed much higher ship-track 
cloud formation than was previously known (10 times greater) and detected a long-term reduction 
over 20 years due to sulfur reductions in maritime fuels.37 (See Chapter 3 for additional examples.)  
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C. Further reading 
There is a vast literature on climate change, including many books and articles introducing climate 
change to non-experts. The following sources may be helpful: 

Books 
• Gates, B., How to Avoid a Climate Disaster (Penguin Books Limited, 2021) 
• Figueres, C., Rivett-Carnac, T., The Future We Choose: Surviving the Climate Crisis (Alfred A. 

Knopf, 2020) 

• Smil, V., How the World Really Works: The Science Behind How We Got Here and Where 
We’re Going (Penguin Publishing Group, 2022) 

• Doerr, J., Panchadsaram, R., Speed and Scale: An Action Plan for Solving Our Climate Crisis 
Now (Penguin Publishing Group, 2021) 

• Wallace-Wells, D., The Unhabitable Earth: Life After Warming (Crown, 2020)  

Reports 
• International Panel on Climate Change (IPCC), Sixth Assessment Report (2023)  

• International Energy Agency (IEA), World Energy Outlook 2023 (2023)  
• World Meterological Organization (WMO), State of Climate Services Report (2023)  

• United Nations Environment Programme (UNEP), Emissions Gap Report 2022 (2022) 
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Chapter 3:  

GREENHOUSE GAS EMISSIONS MONITORING 
Antoine Halff, Colin McCormick and Alexandre d'Aspremont 

Good information on the sources of greenhouse gas (GHG) emissions is essential for responding to 
climate change. Accurate and timely data are needed to design mitigation strategies, prioritize abatement 
opportunities and track the effectiveness of climate policies. Historically, however, data concerning 
sources of GHG emissions have often been partial and approximate, with significant time lags. In many 
cases, a lack of definitive information on GHG emissions has been an important hurdle to climate action. 

Artificial intelligence (AI) is helping to address this challenge. AI tools can analyze vast amounts of data 
from Earth-observation satellites, airplanes, drones, land-based monitors, the Internet of Things (IoT), 
social media and other technologies. This capability dramatically improves our ability to monitor GHG 
emissions from specific sources accurately in near real-time. AI-enabled emissions monitoring has the 
potential to accelerate climate mitigation in many areas. 

A. Incumbent GHG emissions monitoring  
Scientists began regularly measuring GHG concentrations in the atmosphere in the 1950s. These 
measurements have shown a steady increase in GHG concentrations (see Figure 3-1) and have been  

instrumental in raising awareness of the climate crisis. These data, from ground-mounted instruments 
and Earth-observation satellites, such as NASA’s OCO series and JAXA’s GOSAT/IBUKI series (see Figure 3-

 
Figure 3-1. The Keeling Curve, showing measurements of CO2 concentrations at the Mauna Loa Observatory in Hawaii 
since 1958, is named after the scientist Charles David Keeling who started the monitoring program. 
Source: https://keelingcurve.ucsd.edu/ 

 

https://keelingcurve.ucsd.edu/


ICEF Roadmap 2023: AI for Climate Change Mitigation  

December 2023 Chapter 3: Greenhouse Gas Emissions Monitoring - 26 

2), are foundational for climate science. However, they provide very limited or no information on the 
sources, spatial distribution, timing and rates of GHG emissions.  

To understand the sources of GHG emissions, the climate community primarily uses estimated emission 
factors based on generic categories of equipment and processes. Unfortunately, these emission factors 
often systematically underestimate real emissions.1-5 In addition, the use of emission factors creates no 
incentive for improving operational performance. For example, a natural gas pipeline operator will be 
assigned the same level of emissions—based on pipeline length and diameter—whether or not its 
operators engage in routine venting, flaring or other climate-adverse, high-emitting and avoidable 
practices.  

Different GHGs pose very different detection and measurement challenges. 

• CO2 emissions are mainly caused by fossil fuel combustion and deforestation. CO2 emissions from 
fossil fuel combustion can be estimated with reasonable accuracy using fuel-consumption data, 
while deforestation emissions can be estimated with a lower level of accuracy using land-use-
change data.  

• CH4 emissions, in contrast, come from a range of sources (the energy sector, food system and waste 
management) and are much less correlated with consumption. Energy-related methane emissions 
are largely avoidable byproducts of fossil fuel production and transport, uncorrelated with 
consumption rates and very unevenly distributed across fossil-fuel supply chains.  

AI tools are critical for overcoming these challenges.  

 

 

 

 

 

 

 

 

 

 

B. AI-enabled GHG emissions monitoring 
The use of satellites, drones and ground sensors to measure GHG emissions at the source has 
increased significantly in recent years. These instruments produce vast amounts of data. AI 
technologies are essential to process and analyze these data. Progress on the “software” side—the 
capacity to process and analyze raw satellite imagery and other data at scale in near-real time—is a 
critical enabler of advances on the “hardware” side.   

 
Figure 3-2. Japan’s GHG-observing satellite "IBUKI-2" (GOSAT-2). 
Source: https://global.jaxa.jp/projects/sat/gosat2/ 
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Further progress in AI, together with a new generation of satellites, will further improve methane-
emissions monitoring and abatement. Progress in real-time carbon-emissions monitoring, as well as in 
measurement and monitoring of natural carbon sinks—such as vegetation—offers the same potential.   

(i) Methane emissions  
Methane has more than 80 times the warming power of CO2 in the first 20 years after release and is 
as big a source of near-term warming as CO2.6  

AI has been particularly important in improving methane-emissions monitoring. AI helps to (1) process 
data from methane sensors at scale, (2) combine input from multiple satellites to overcome each 
particular satellite’s limitations and (3) integrate satellite information with data generated by other 
types of sensors to build multi-scale monitoring and reporting systems.  

a.  Processing data at scale 
AI algorithms that process large amounts of remote-sensing data related to methane have been 
developed by scientists at leading research institutions, including the Netherlands Institute for 
Space Research (SRON), the French Laboratory for Climate and Environmental Science (LSCE) and 
the Wofsy group at Harvard University. These algorithms have been further developed and 
operationalized by Kayrros, a French-based start-up company, which has enabled the automatic 
detection and measurement of large methane emission events at scale on a global basis (Figure 3-
3). (Two of the co-authors of this chapter are principals of Kayrros.) The International Methane 
Emissions Observatory (IMEO), launched by the UN Environment Programme (UNEP) and the 
European Union in 2021, has contracted with Kayrros, SRON and GHGSat (a Canadian company 
that operates methane-tracking satellites) to collect information on super-emitters and work with 
the responsible parties and their governments to reduce emissions.7 

Advances in AI-enabled image processing capacity have considerably advanced the monitoring 
power of satellites, which can now detect methane at the same spatial resolution as aerial surveys 
at much lower cost and much higher temporal resolution.8 AI-enabled global methane monitoring 
has shown that super-emitters are more ubiquitous than previously thought and that eliminating 
most super-emitters from the oil and gas industry could be achieved at negligible cost.9-11 
Eliminating energy-related super-emitters would help significantly reduce anthropogenic methane 
emissions, which could cut the increase in global average temperatures by 0.3 °C by 2045 and by 
0.5 °C by 2100.12, 13 This set of abatement measures—the fastest known way to reduce global 
warming—is entirely dependent on the use of AI. 
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The policy implications of these developments are already being felt. AI breakthroughs have played 
an important role in advancing understanding of methane emissions and have enabled climate policy 
initiatives, including the Global Methane Pledge, the EU Methane Strategy, the methane provisions 
of the US Inflation Reduction Act, upcoming new methane regulations from the US Environmental 
Protection Agency (EPA) and IMEO and its Methane Alert and Response System (MARS).  

b.  Combining data from multiple satellites  
AI has been particularly valuable in enabling GHG monitoring based on data from satellites with 
diverse capabilities, including satellites that were not initially intended for GHG monitoring.14 For 
example, satellites such as Sentinel-5P and Sentinel-2 from the European Space Agency, PRISMA 
from the Italian Space Agency, EnMAP from the German space agency DLR and Landsat 8 and 9 from 
the National Aeronautics and Space Administration (NASA) have different orbital timing (days 
between revisiting a given location), spatial resolutions (the ground size of a single image pixel) and 
spectral (color) sensitivity. Input from these and other satellites, with distinct sets of benefits and 
disadvantages, has been combined to build a more powerful and comprehensive monitoring and 
reporting system.15 This system makes it possible to confidently attribute methane emissions at the 
facility level (versus basin-level), overcome terrain challenges (such as mountainous terrain in China’s 
coal-producing Shanxi province) and even pinpoint the individual pieces of equipment responsible 
for methane emissions (such as specific elevators or ventilation units in mines). 

c.  Integrating satellite data with other data 
Some regulations call for very low detection thresholds at the asset level that cannot be detected via 
satellite and can only be detected with local in situ sensors. However, the latter have inherently 
limited range and are not configured to detect large intermittent events. AI can be used to integrate 
data from various types of sensors to build comprehensive, multi-scale monitoring and reporting 

 
Figure 3-3. Methane super-emitters identified from satellite data processed with AI algorithms. Source: Kayrros. 
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systems. This capability is critical for establishing differentiated natural gas and liquified natural gas 
(LNG) markets based on lifecycle GHG emissions and for establishing carbon border adjustment 
mechanisms.  

(ii) Carbon dioxide emissions  
AI is increasingly being used to better understand and quantify the sources of CO2 emissions. AI is 
helping to build on existing datasets and dramatically improve the timeliness, granularity and 
accessibility of CO2 information. 

AI can analyze and integrate large quantities of data from highly diverse real-time or near-real-time 
datasets from industry, power generation, ground transportation and other sectors. This approach has 
been used to produce near-real-time trackers of CO2 emissions by sector, with continuous 
improvements made to the underlying datasets and AI-based emissions analysis methods.16, 17 

AI-enabled CO2 emissions data allow policymakers to assess the effects of emission-abatement 
measures with timeliness and precision. For example, AI can model and monitor CO2 emissions from 
urban environments with high spatial and temporal resolution, helping city managers and urban 
planners assess the effects of abatement measures, sharpen their toolkit and respond to changing 
circumstances in a timely manner.18-20 

More use-cases for AI-enabled CO2 emissions data will undoubtedly emerge as AI algorithms continue 
to improve, helped in part by new underlying data from Earth-observation satellites scheduled to be 
launched soon. 

a.  Providing near real-time information on CO2 emissions and demand for  
carbon credits 
Climate Trace, Carbon Monitor and other organizations are using AI to more accurately monitor CO2 
emissions. Their methods include:   

• combining computer vision with data from remote-sensing satellites, such as detecting water 
vapor (a proxy for CO2 emissions) that is released from large natural-draft cooling towers at 
power plants;21, 22 

• measuring the daily amount of vehicle traffic on roads over large regions and the GHG emissions 
that these vehicles collectively produce;23 and 

• improving plume-inversion techniques to translate direct CO2 concentration measurements into 
estimates of CO2 emissions rates at large power plants.24  

Related work has used AI to create a much more accurate estimate of GHG emissions per nautical 
mile from cargo ships and has combined this with satellite-relayed ship tracking data from 
automated identification system (AIS) transponders.25  

Such transparency carries far-reaching consequences for carbon abatement. In particular, AI-
enabled measurements can support and improve cap-and trade systems, amplifying their impact by 
providing carbon-market participants with up-to-date information on implied demand for carbon 
credits.  
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AI-enabled measurements of carbon emissions can also be deployed across extended supply chains 
to assess the lifecycle emissions of commodities and other products. This type of information may 
be of critical importance for carbon border adjustment mechanisms. For example, AI-enabled 
measurements could be used to assess the amount of carbon (and methane) emissions embedded 
in products including crude oil, gasoline, LNG, electric vehicles or wind turbines, by collecting 
emissions associated with each link of their respective supply chains. This information could be used 
by importing countries to assess the product’s GHG intensity and any associated GHG tariff. 

Finally, AI tools can provide policymakers with a powerful resource to track the effect of emissions 
regulations, identify and prioritize CO2 abatement opportunities, detect swings in CO2 emissions and 
craft appropriate reaction measures in a timely manner. This is particularly the case for urban CO2 
emissions, which are estimated to account for up to 60% of total CO2 emissions and which can be 
analyzed with AI technologies in great detail.26  

b.  Achieving near real-time transparency on negative CO2 emissions  
In its Sixth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) highlights the 
critical importance of vegetation to achieving our climate goals. Forestry and other forms of 
vegetation constitute a vital carbon sink. Monitoring this carbon sink has been challenging with 
traditional techniques, but AI algorithms can be trained to survey the world’s vegetation at high 
spatial resolution with radar and optical satellite imagery and can precisely measure the amount of 
biomass carbon sequestered in forestry and other forms of vegetation, at scale and at reasonable 
cost.  

Traditional ways of monitoring forest projects involve sending teams of inspectors on the ground at 
large intervals of 5 to 10 years to inspect sample sections of the forests, measure the circumference 
of their tree trunks, and extrapolate from those measurements. Inspections are (1) too few and far 
between to detect deforestation or degradation in time to take corrective measures, (2) do not 
account for carbon leakage (whereby deforestation is pushed from carbon-offset projects to 
surrounding areas) and (3) do not provide data sufficient to assess the baselines used to set the 
number of carbon credits issued (i.e., the assumed growth trajectory of the forest parcel in the 
absence of a carbon offset project).  

In contrast, AI can be used to process radar and optical satellite imagery to survey forestry and build 
a strong monitoring, reporting and verification (MRV) architecture around carbon-offset projects. AI 
technologies make it possible to not only monitor entire projects comprehensively at relatively high 
frequency, cost-efficiently and non-intrusively, but also to detect carbon leakage virtually from the 
onset and to test the projects’ baselines by using archival imagery to observe underlying trends in 
their respective areas over extended periods of time. This transparency has the potential to rebuild 
confidence in carbon-offset projects, prevent and crack down on unsavory practices in NBS markets, 
set strong safeguards around our shared forestry endowment and safely channel capital from North 
to South.  

Many start-up companies are currently engaged in AI-assisted biomass carbon monitoring, 
competing commercially in this emerging sector. As with the monitoring of positive carbon 
emissions, there are several use cases for this application of AI technology. These include 
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strengthening forest protection through robust MRV of carbon offsetting projects, supporting carbon 
markets with the provision of near real-time data on the supply of carbon credits, and facilitating the 
implementation of anti-deforestation policies.  

These AI-assisted technologies are a potential game changer for developing a robust and transparent 
nature-based solutions (NBS) sector. NBS projects have been plagued by a lack of transparency that 
has shielded dubious and sometimes fraudulent business practices, caused market inefficiencies and 
failures, and severely undermined market confidence in NBS as a viable climate tool. 27, 28 AI 
technologies can provide carbon traders with real-time information about the supply of carbon 
offsets, supplementing implied demand data produced from the monitoring of carbon emissions. 
Near-real-time transparency on carbon-credit supply and demand fundamentals can facilitate price 
formation in carbon markets and help send the price signals needed to support investment in offset 
projects.29 

(iii) Barriers 
The use of AI to harness satellite imagery and other data 
sources is one of the most promising developments for GHG 
emissions abatement. However, there are important barriers.  

a. Barrier: Lack of AI literacy 
Lack of AI literacy limits the ability of data users to analyze 
GHG data, integrate these data into their operations and 
generate customized products and applications based on 
these data. Lack of AI literacy could also adversely affect 
public trust in GHG data and create a fertile ground for the 
misuse of data. To realize the full potential benefits of AI 
for GHG-emissions monitoring, AI literacy must be broadly 
improved, including in developing economies.  

b. Barrier: Conflicting AI-enabled greenhouse gas (GHG) emissions data 
With a proliferation of Earth-observation satellites being launched in the near future and new start-up 
companies competing in the AI-for-climate space, different providers could potentially release 
conflicting measurements. This could undermine public confidence in the accuracy of AI-enabled GHG 
emissions data.  

This challenge could emerge with respect to methane emissions, in particular, in the years ahead. The 
Environmental Defense Fund plans to launch MethaneSat in 2024; Carbon Mapper, a public-private 
joint venture between the California Air Resources Board (CARB), NASA, Planet Labs and others is also 
set to launch in 2024; GHGSat will expand its fleet; Absolut Sensing, a French private company, is 
preparing to launch its own fleet of methane tracking nano-satellites; and many new start-up 
companies are seeking to tap into the wealth of raw data from multiple satellite constellations to 
generate actionable methane data. The proliferation of methane tracking sources could lead to real or 
apparent data inconsistencies, requiring integration and harmonization. 
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c. Barrier: Sovereignty concerns 
Sovereignty concerns may emerge as a significant impediment to the use of AI-enabled GHG emissions 
data. Some countries may object to foreign monitoring and analysis of emissions within their territories. 
AI-enabled analysis of GHG emissions data may come under assault or face a trust deficit if it is 
perceived as biased in favor of certain economic actors.  

Independent verification of global GHG data and international consensus about the accuracy of AI-
enabled analyses will be required to fully realize the potential benefits of AI tools in GHG emission 
monitoring.30 

d. Barrier: Uncertain financial models  
A tension exists in the current development of AI tools for GHG emissions data. The technological 
innovations behind these new tools are developed by private-sector enterprises that must 
generate revenue from the sale of data to recoup their investments and fund further research and 
development. However the data must be as widely-shared as possible and ideally made available to 
the public in open access to facilitate global acceptance of their accuracy. Protecting the 
intellectual property in many AI-enabled data technologies is essential to the financial success of 
these private-sector enterprises and thus to innovation in AI data technologies but may limit public 
acceptance of GHG emissions data.  

(iv) Next steps 
Several measures could help address the barriers described above and could promote the use of AI 
tools for GHG emissions monitoring.  

a. Promote AI literacy  
AI literacy could be promoted in education worldwide, both by integrating AI into students’ broad 
curriculum and by establishing AI as an independent, specialized field of study. In addition, 
professional accreditation standards could include AI literacy metrics. For example, certified public 
accountants and civil engineers could be required to demonstrate minimal AI proficiency and the 
ability to use basic AI technologies for professional certification.  

Furthermore, organizations in both the public and private sectors could enhance in-house AI 
proficiency, whether by requiring minimum AI literacy standards from a broad cross-section of 
employees or by building up dedicated AI-focused units and data-science centers within their 
organizations. Minimum AI literacy may be essential for these organizations to deploy AI-enabled 
GHG emissions data and integrate those data into proprietary databases and operational systems.   

b. Promote mechanisms to validate AI-enabled greenhouse gas (GHG) emissions data 
Because AI-enabled data often detect and measure things that cannot be otherwise detected or 
measured, proving their accuracy can be challenging. Governments could encourage public 
research to develop ways of independently replicating and corroborating these data and 
documenting their accuracy based on well-calibrated ground-truth measurements. For example, a 
team of scientists at Stanford University recently performed controlled blind releases of methane 
in the Arizona desert to test the capacity of various companies to detect and accurately measure 
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these releases. Similar studies could be funded and their findings disseminated to build confidence 
in AI-enabled data. 
 
 

c. Establish best practices/regulations for AI-enabled data  
To strengthen public trust in AI-enabled 
GHG data and foster their use, firewalls 
could be built between companies in the 
data-generation business and those 
selling low-carbon certification products 
based on these measurements. If the 
business model of companies that 
measure GHG emissions with their 
proprietary AI technologies is based on 
the sale of low-emission guarantees or 
other “certificates of origin” (e.g., certificates offering the “guaranty” that certain volumes of LNG or 
petroleum products have been “responsibly” produced and are free of methane or other emissions) 
that creates an incentive for the data provider to boost sales by providing favorable data. Data 
generation and certification could be decoupled, so that the sale of AI-enabled GHG measurements 
is not conditioned on the favorability of the outcome to customers.  

AI data providers could also be subject to some degree of regulatory oversight, similar to the way 
energy Price Reporting Agencies methodologies were subjected to some form of regulatory guidance 
from the International Energy Agency (IEA), the Organization of the Petroleum Exporting Countries 
(OPEC) and the International Organization of Securities Commissions (IOSCO) under a G20 mandate 
in the wake of the 2011 London Interbank Offered Rate (LIBOR) scandal.31 For example, regulations 
could seek to address and avoid any conflict of interest from AI data providers that would also 
engage in the certification of so-called “responsibly produced liquefied natural gas,” requesting that 
the functions of emissions measurement and responsible gas certification be performed by separate 
actors.  

d. Set up one or several global “owners” of AI-enabled greenhouse gas (GHG)  
emissions data 
To manage the risk of conflicting AI-enabled data on GHG emissions, one or several global “owners” 
of these data could be established and tasked with reconciling potentially contradictory 
measurements. These data owners may also be tasked with identifying and adopting best practices.  

In the area of methane emissions measurement, the IMEO may fulfill this role. A challenge for the 
IMEO and other such multilateral organizations is to engage with and ensure the participation and 
buy-in of a broad diversity of energy consuming and producing countries and state and non-state 
actors, notably to get buy-in from key stakeholders, including major oil and gas exporting countries 
and large economies, such as China and India.   
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Existing organizations such as the World Meteorological Organization and Food and Agriculture 
Organizations could handle CO2 and other GHG emissions datasets, as well. Alternatively, a single 
new, centralized organization could be set-up to serve as a one-stop clearinghouse for all climate 
data.   

Finally, the data “owner” in charge of harmonizing and reconciling data may not necessarily 
warehouse all types of GHG data but may choose instead to focus only on high-level data, while also 
providing a form of certification for private providers of more granular GHG measures. 

e. Elevate AI for climate in international dialogue and negotiations 
A first step in managing some of the issues above may be to foster international cooperation on 
addressing them. Climate policy hinges to a large extent on sound international policies with respect 
to these AI issues. For example, it is important to acknowledge and address AI-for-climate issues in 
such institutions as the UN Framework Convention on Climate Change (UNFCCC), the World Trade 
Organization (WTO) and IEA. 

C. Conclusion  
AI is making great strides in providing near-real-time 
transparency on GHG emissions by enabling data collection 
on metrics that were previously unavailable  (with CH4) and 
by enhancing the timeliness, coverage and accuracy of 
existing datasets (with CO2 emissions). This information is 
provided at scale, globally and cost-efficiently.  

Rapid developments in the use of AI for GHG emissions 
measurements are opening new opportunities for climate 
action on many fronts and at many levels. AI-enabled GHG 
emissions data provide fresh fodder for climate research and 
may lead to new and more effective climate policies, such as 
the methane rules currently under development in various 
jurisdictions. AI-enabled emissions data are also providing key 
metrics and key performance indicators (KPIs) to guide 
environmental, social and governance (ESG) practices in the financial sector. For example, banks can use 
data on methane emissions from oil and gas companies as criteria for lending decisions or investors 
could use them to monitor the footprint of their portfolio companies and help them reduce their 
emissions. Industrial actors in carbon-intensive sectors and energy producers can use AI-enabled data to 
monitor their own footprint and improve their operating practices. The fast-growing volume of AI-
enabled data on GHG emissions in open access also helps raise public awareness of climate change, 
empowering civil society to hold public officials and private companies accountable for their climate 
footprint.    

Progress in AI-enabled GHG emissions data technologies is ongoing, enabled by new algorithms, cloud 
computing and the falling cost of data storage, growing computing capacity, and a proliferation of new 
sources of raw data, including satellite imaging, geolocation data, the IoT, etc. The growth of underlying 

 



ICEF Roadmap 2023: AI for Climate Change Mitigation  

December 2023 Chapter 3: Greenhouse Gas Emissions Monitoring - 35 

Earth-observation data is itself fueled by falling costs in satellite construction and launching. AI 
technologies are also supported by the promotion of AI literacy in education and across all sectors of 
society.  

Because the GHG emissions data enabled by AI are often new, their use cases are still being established 
and are highly versatile. But the wealth and breadth of potential applications of these technologies are 
already apparent, making AI-enabled GHG data services a critical “climate tech” sector that is vitally 
important to the energy transition.  
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Chapter 4:  

POWER SECTOR 
Zhiyuan Fan and David Sandalow 

The power sector will play a central role in meeting economy-wide decarbonization targets. The scale 
of the challenge is enormous. 

• In 2022, global emissions of carbon dioxide (CO2 ) from the power sector were 14.5 Gt—
roughly 40% of energy-related CO2 emissions globally.1 

• Most strategies for deep decarbonization foresee growing reliance on the power sector in the 
decades ahead. In the Net Zero by 2050 scenario prepared by the International Energy Agency 
(IEA), for example, the share of electricity in final energy use increases from 20% in 2020 to 
50% in 2050.2 To achieve economy-wide net-zero emissions targets, the power sector must 
grow significantly as it decarbonizes.  

• In 2022, global investment in the power sector was about $1 trillion.3   
• In IEA’s Net Zero by 2050 scenario, annual power sector investment surges to roughly $3 trillion 

by 2030 and stays at or near that level for decades.2 
 

Artificial intelligence (AI) provides an important set of tools to help decarbonize the power sector. 
The growing capabilities of AI tools and increasing amounts of power sector data both play a role. 

 

 
 

 
Figure 4-1. Data and AI applications for power grid infrastructure.5 
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Machine learning (ML) tools use data from satellites to predict solar and wind power generation and 
data from the “Internet of things” to forecast electricity demand.4 Indeed due to the profound 
complexity of the power grid’s structure and operations, AI is becoming an essential component of 
power-grid infrastructure. Power-sector management is one of the most important opportunities for 
using AI to counter climate change.5, 6 

This chapter gives an overview of AI’s current and potential impact on four parts of the power 
system: (1) generation infrastructure (both utility-scale and distributed), (2) transmission and 
distribution networks, (3) end-use sectors and (4) energy storage.  

(This chapter mostly uses the term “AI” when referring to programs that perform tasks through 
inference of patterns and learning from data. In technical literature, “ML” is more common.) 

A. Generation infrastructure 
The planning, operation and maintenance of generation infrastructure are complex tasks, requiring 
attention to a variety of factors including the size and expected lifespan of equipment, renewable 
resource availability and transmission congestion. AI can play an important role in performing these 
tasks.  

AI can be especially valuable in siting large-scale renewable projects.  

• Determining the optimal size and location of solar projects requires complex calculations, 
which must consider weather patterns, grid constraints and other factors. Engel and Engel 
(2022) reviewed AI’s application for optimal sizing of solar plants.7 Ahmed et al. (2020) 
summarized how both short-term (<1 day) and long-term (seasonal) solar-potential predictions 
can help optimize site-specific solar plant planning.8   

• Similar complex planning challenges also exist for wind farm planning, which must consider 
terrain morphology, wind speed and direction, turbine type and costs.9 Ashwin Renganathan et 
al. (2022) applied AI models to study economic performance of wind farm design and wind 
farm wake interactions for planning decisions.10  

AI also has significant potential to assist with integrated electric-grid planning. This is an important 
area for research and innovation. 
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After renewable generation capacity is installed, operational decisions can have significant impacts 
on power output and costs. Predicting variable solar and wind power is one of the most well-studied 
topics in the use of AI in the power sector (see Figure 4-2).11 For example:  

• AI can predict weather relevant to wind/solar generation, such as wind speed12 and solar 
radiation.13  

• AI can integrate weather forecasts and power production forecasts. (These forecasts typically 
focus on short-term predictions (<72 hours, mostly 24 hours) that rely on robust historical and 
real-time data.)14  

• Other applications for maximizing renewable power generation using AI include reinforcement 
learning control for wind turbines,15, 16  solar system operation4 and solar shading.17  

• AI can help accelerate deployment of non-conventional renewables such as wave energy18 and 
geothermal energy.19 In geothermal energy, AI can help improve numerical reservoir modeling, 
exploration, drilling and production.18  

AI can also be applied for power generation infrastructure maintenance. Wind power facilities are 
often located in tough environments and must endure high wind-speed, extreme temperatures 
and/or low population density, making maintenance expensive (usually higher than procurement 
costs).20 AI can be used for maintenance prediction and scheduling to minimize turbine failure and 
malfunction, as well as for reducing maintenance frequency and costs.20, 21 Similarly, maintenance 
optimization using AI can be used for solar,22 nuclear,23 hydropower,24 and general power plants.25 AI 
for utility-scale infrastructure maintenance applies data-driven predictions for failure, risk detection 
and age/life predictions to minimize cost and production downtime. 

AI can be especially helpful in operating rooftop solar PV. AI can predict rooftop solar installation 
potential,26 generate forecasts27 and reduce customer acquisition costs.28 Overall, AI can help with 
deployment of rooftop PV by predicting assets’ production and reducing uncertainty that may 
damage the grid.  

 

 
 

Figure 4-2. AI for renewable predictions.11 
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Federated learning (FL)—a special type of AI—can be very useful in distributed infrastructure. FL is a 
collaboratively decentralized privacy-preserving learning method that allows training to be 
performed on local devices.29 In FL, only training output (updated model parameters) is shared with 
the global model while data are kept private within users’ local devices. FL can also perform tasks 
such as rooftop solar generation prediction,30 which provides an alternative to AI models based on 
centralized data and can perform various tasks in the “smart city” and “smart grid” context.31 

In summary, AI can help improve power generation infrastructure, especially wind and solar, from all 
phases of the project lifetime: planning, operation and maintenance. Compared to operation and 
maintenance, generation-infrastructure planning using AI is less well-studied and potentially a point 
for innovation. Data support is critical for predictive approaches and proposed AI-based methods are 
rarely deployed for commercial applications. 

B. Transmission and distribution infrastructure 
Transmission and distribution infrastructure is needed to bring electricity to end-users. 
Interconnected lines form the transmission and distribution network is the backbone of the electric 
grid. Planning and operating this infrastructure involves solving complicated nonlinear problems. AI 
can improve optimization methods and provide completely new perspectives. 

Transmission expansion planning (TEP) is a process that determines the optimal location and capacity 
of new transmission lines, as well as the best timing for new construction. TEP involves large-scale 
combinatorial and nonconvex optimization problems in which finding a feasible solution can be 
difficult.32 As a result, heuristic methods are sometimes adopted to search line-by-line to locate a 
“good solution.” Recent studies highlight the potential for AI to contribute to TEP:  

• Borozan et al. (2023) integrated AI with well-established TEP decomposition methods to 
improve computational efficiency while preserving solution quality.33  
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• Wang et al. (2021a and b) showed that AI can be used to solve multi-stage TEP based on the 
static model, which can be flexibly adjusted and incorporate uncertainties on wind power and 
demand projections.34, 35  

• Similarly for transmission networks, Fu et al. (2020) studied the stochastic optimal planning of 
distribution networks using AI, considering both renewable power and demand variability.36  

Although AI has been used to investigate TEP problems since at least 2002,37 its application for 
transmission and distribution planning is not widely studied. This topic is an opportunity for 
innovation. 

In grid operation, AI can be used to improve both economics and resilience. The famous optimal 
power flow (OPF) problem is a good example of AI’s application for grid operation. As Hasan et al. 
(2020) mention in their review, the research community is still in search of reliable and 
computationally efficient OPF solution techniques 60 years after its initial formulation.38 AI can 
obtain a more cost-effective solution and reduce the computational burden.38 Xie et al. (2020) 
summarize AI’s application in power system resilience, showing AI’s great potential in outage 
forecasting, stability assessment, power system control and power restoration.39 

AI can also help distribution network operations. Historically, the distribution grid is too complex and 
tangled to be mapped accurately, leading to difficulties with fault detection.  Recent progress in 
digitalization has increased the observability and controllability of the distribution grid and enabled 
AI to assist in fault detection.40 Studies have shown that AI methods outperform traditional methods 
in fault detection accuracy but demand large amounts of data and significant computational 
resources.40, 41  

In conclusion, AI can be applied to transmission and distribution infrastructure to improve 
planning/operational economics and resilience. As the optimization-based solution is largely limited 
by computational load and expansion in problem size/complexity, AI is becoming increasingly 
important in providing not just better but potentially more robust solutions. 

C. End uses 
Analyses of electric grid infrastructure sometimes treat end-use sectors such as buildings and 
industrial facilities as out of scope. These sectors are often studied as separate research questions. 
However, electricity-demand forecasting, demand side management and new end-use infrastructure 
(such as EV charging stations and hydrogen systems) are becoming increasingly important to the 
electric grid. AI can play an important role in these areas. 

Demand prediction and scenario projections using AI already exhibit great potential. AI can be used 
to perform general demand prediction (time-series decomposition and prediction),42 national long-
term demand scenario forecasting43 and demand predictions for specific sectors such as buildings44 
and EV charging.45 These demand predictions can be used for system operation such as unit 
commitment (short-term) and system planning (long-term).  

Aside from passively predicting electricity demand, AI can also be used to actively manipulate 
demand in limited scope. Known as demand response, this refers to programs in which certain users 
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volunteer to limit electricity consumption for financial reward, providing the grid operator more 
flexibility and minimizing the need for capacity charges, spinning reserves and ancillary service 
storage purchases. Antonopoulos et al. (2020) reviewed AI approaches for demand response, 
demonstrating that AI can capture human feedback, cluster users and tasks without prior knowledge, 
and activate participants in demand response programs.46 Demand-side AI research requires 
significant data support with high spatial-temporal resolution. 

EV charging infrastructure offers 
another great example of AI’s 
value. In addition to predicting EV 
charging demand (see above), AI 
can help with EV charging 
infrastructure planning. Deb 
(2021) reviewed ML approaches 
to solving charging infrastructure 
planning problems, highlighting 
that AI can be used to optimize 
charging station placement, 
charger utilization (station size) 
and scheduling for minimum 
pricing.47 Federated learning can 
perform tasks such as EV demand prediction48 and optimal EV charging station location.49 

AI can also assist with integrating the electric grid and emerging low-carbon hydrogen networks. 
Green hydrogen production will consume enormous power. Optimizing integration of the electric 
grid with green hydrogen production can deliver significant savings.50 AI can help optimize green 
hydrogen production by predicting renewable power potential,51 curtailed renewable energy52 and 
water sustainability.53 AI can also help plan hydrogen refueling stations, optimizing station-based 
production and storage.54 AI can be used to integrate renewable power with hydrogen-energy 
storage to increase grid stability and lower peak loads.55  

In summary, AI for demand prediction and demand-side response can assist with planning and 
operating other grid infrastructure components. AI can also help plan new end-use infrastructure, 
such as EV charging stations and low-carbon hydrogen networks. 

D. Energy-storage infrastructure 
With more and more variable renewables in the power system, energy storage is becoming an 
essential part of grid infrastructure. Energy storage balances supply-demand temporal mismatch, 
serving as both generation and load. The scale of energy storage, although quickly expanding, is still 
limited. AI can help plan for energy storage, schedule its operation and optimize its lifetime value. 

AI has demonstrated ability to help predict and plan for the energy storage that will be required on a 
power grid.56 Shams et al. (2021) used ML-based prediction of curtailed renewable power to plan 
hydrogen and battery energy storage systems.57 Zhou et al. (2022) applied AI for energy storage 
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scheduling.58 AI has also been used to help battery owners plan for maintenance, replacement and 
optimal use of their energy storage assets.59, 60 

EVs have significant potential as 
distributed energy storage, 
sometimes referred to as “vehicle 
to grid (V2G)” or “vehicle to 
everything (V2X)”.61 EV sales are 
growing rapidly. Aggregated 
volumes of energy storage in EV 
are very large in scale – many 
times greater than deployed 
amounts of stationary storage. 
Most vehicles are parked most of 
the time. However in order to use 
EVs as grid assets, grid managers 
must understand and pay careful 
attention to drivers’ use of their 
vehicles for mobility services, which will be a priority for most drivers in most situations. AI can be 
used for predicting user charging behaviors,62 helping solve vehicle routing optimization problems,63 
and improving vehicle-to-grid performance.64, 65 AI can maximize the value of data collected from 
vehicles, facilitating deployment of V2G technologies. 

E. Barriers and risks 
Several barriers limit the adoption of AI for decarbonization of the power sector.  

First, AI models and methods are not yet sufficiently robust or well-developed for widespread 
deployment. Notwithstanding some studies that date back to the early 2000s, most studies on this 
topic are very recent and applications of AI for the grid are at an early stage of research and 
technology readiness level (TRL). Further, actual deployment timelines and impacts on commercial 
systems are still highly uncertain. AI applications have greatly benefited from both the explosion of 
power-grid system data and AI algorithm research. As the “digital infrastructure” of the grid becomes 
more universal, AI is increasingly necessary to effectively use the growing amount of grid-related 
data. However, more fundamental work on models and methods is needed for large-scale 
deployment. 

Second, a lack of general guidance and standards for performance evaluation is another barrier to AI 
deployment. Nearly all types of AI methods (e.g., supervised, unsupervised and reinforcement 
learning) explored in the literature can be applied to grid infrastructure. These methods have the 
potential to deliver big improvements over non-AI methods. Quantifying the improvements in a 
systematic way requires guidance and standards. 

Finally, the lack of a knowledgeable workforce is an important barrier. AI’s application in grid 
infrastructure requires a workforce that is knowledgeable on both the electric grid and AI. This 
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knowledge base is important for research and development (R&D), technology deployment and 
policy design.   

As AI is deployed in the power sector, security risks will be an important topic. Grid security is a 
paramount concern for grid operators. In most literature on the use of AI in the power sector, 
security risks receive scant attention. Important questions include (1) Is there a security risk from 
using AI in the proposed way?; (2) If not, how does one prove that?; and (3) If yes, how does one 
minimize it? Whether AI will introduce security risks to grid infrastructure remains unclear, but risk 
assessment and minimization strategies are essential. Security risks must be studied and properly 
addressed before deploying AI for most grid infrastructure. (See Chapter 10.) 

F. Conclusion 
In summary, AI has significant potential to help decarbonize the power sector in several areas.  

• Short-term predictions based on time-series data. Predictions of electricity demand, solar 
availability and wind speed are necessary for operating electric grids and power markets. These 
types of data follow certain physical laws and patterns of human behavior, but are intrinsically 
stochastic. Prediction is possible but difficult with conventional non-AI algorithms. AI can detect 
patterns in historical data that improve predictive abilities enormously.  

• Scenario development, such as for EV charging and renewable power deployment. These 
scenarios are important to guide grid planning, especially in light of uncertainties related to 
climate change impacts and the deployment of new technologies. If rich historical data are 
available, AI tools can help significantly with these tasks.  

• Improving optimization, such as for planning problems. Many power grid optimization 
problems involve work with large, nonlinear models. AI can speed computation, improve 
feature extraction and help solve “optimization unsolvable” problems such as stochastic 
planning. Data support for these model-based problems is generally less critical than in other 
areas. 

• System integration, operation and optimization. The grid infrastructure is becoming more and 
more inclusive and increasingly exposed to real-time uncertainties such as wind/solar 
fluctuation. Taking a systematic view, instead of focusing on certain grid components, is more 
critical than in the past. Furthermore, grid operation have objectives related to cost, reliability, 
resilience, equity and greenhouse gas emissions. AI shows great promise in helping grid 
managers understand more complex and quickly evolving grid infrastructure.  

AI has potential application in nearly all aspects of power-sector management, including planning, 
monitoring, maintenance and operations. AI is becoming an important tool to help decarbonize the 
power sector, however AI tools for decarbonization are not yet widely deployed. Barriers must be 
overcome and risks addressed before that happens.    
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Chapter 5:  

MANUFACTURING SECTOR 
Alp Kucukelbir 

The manufacturing sector makes products on which the modern world depends. Billions of tons of 
steel and cement are used in buildings, bridges and roads each year. Chemicals, including ammonia, 
provide fertilizers and other essential building blocks for modern society.1  

At the same time, the manufacturing sector is responsible for roughly one third of global greenhouse 
gas emissions. Steelmaking has the largest carbon footprint in the manufacturing sector, followed by 
cement-making and then chemicals. The remaining emissions come from aluminum, glass, paper, 
and other light manufacturing.2-5  

Decarbonizing the manufacturing sector will be challenging. Many industrial processes require high 
and sustained heat, which fossil fuels are well-suited to delivering. Some industrial processes, 
including cement-making, rely on chemical reactions that emit CO2. Many industrial products are 
globally traded commodities, subject to significant loss of market share due to small increases in 
production costs.6, 7 

Artificial intelligence (AI) is showing promise in helping address the challenge of decarbonizing the 
manufacturing sector. This chapter discusses that potential and explores opportunities for further 
work. 

A. How can AI help decarbonize manufacturing? 
Consider the following example: AI can play a central role in reducing costs and emissions for electric 
arc furnaces (EAFs)—a key technology for decarbonizing steelmaking. EAFs melt scrap metal using 
electricity instead of coal. Using recycled/circular feedstock, such as scrap, is a core idea that 
pervades the effort to decarbonize all types of manufacturing. This idea introduces a novel challenge: 
how to manage new sources of variability.  

Virgin raw materials are stable. 
Mining operators control their 
operations, packaging and shipping 
raw ingredients that meet specific 
quality criteria. Steelmakers are 
accustomed to this stability. But 
every batch of scrap is different. One 
batch of scrap may contain too much 
of an alloy, another possibly too little 
of it. Modern steelmakers can adjust 
for this variation by enhancing the 

Figure 5 – 1. Factories are increasingly digitalizating their operations. 
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scrap with costly additives. The most common strategy is simple: plan for the “worst batch” scenario. 

This strategy has led to a consistent, industry-wide overuse of additives. No matter what scrap metal 
comes in, unnecessary amounts of additives are added. The extent of this practice is such that the 
biggest portion of EAF steel’s carbon footprint is the upstream emissions from sourcing these 
additives.8 

AI offers a better approach to this challenge: 
instead of over-designing for the “worst 
batch,” AI can help steelmakers “adapt to 
each batch” with a prediction that has 
accuracy unavailable in existing software 
systems (Figure 5-1). The idea is to use AI to 
recommend optimal production settings, 
adapting to the variability in each batch. 

Manufacturing remains a challenging 
segment of the economy to decarbonize and 
will require significant long-term hardware 
research and investments. Many 
governments are sponsoring capital-
expenditure-heavy projects to adopt recycled 
feedstock, switch to greener sources of fuel, 
and make clever use of industrial heat.9, 10 

AI provides a complementary benefit that is 
(1) available today and (2) can be applied to existing manufacturing infrastructure. In many cases, AI 
can be applied today without any capital equipment change-out—it is ultimately just an operational 
change. As a result, AI can be orders of magnitude faster and cheaper to adopt than deeper 
decarbonization pathways that require significant capital expenditures. 

B. Common applications of AI in manufacturing 
(i) Decarbonizing the process of making things 
The steelmaking example highlights one way AI can reduce a manufacturer’s emissions. There are many 
more. Here are a few proven ways AI can help reduce emissions across many sectors: 

• Adapt to volatility faster. Manufacturing plants are designed to minimize variation and consistently 
produce high-quality goods. The idea of using data to control quality variation dates to Walter A. 
Shewhart, who established the field of statistical process control at Bell Laboratories in the 
1920s.11 AI extends the notion of statistical process control, enabling manufacturers to adapt to 
issues more quickly—any amount of time avoided making low-quality goods reduces scrap and 
minimizes a plant’s waste and energy usage.  

  

 
Figure 5 – 2. AI enables manufacturers to adapt to recycled 
feedstock. Factories typically address the increased variability of 
recycled feedstock by planning for the “worst case” scenario; 
this leads to unnecessary waste and excess emissions. Instead, 
factories can use AI to optimize operations and produce equally 
reliable products with net CO2e reductions. 
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• Adapt to volatility better. Without AI, reducing the time wasted making low-quality commodities 
may be difficult because existing statistical methods may not be accurate enough to explain the 
root cause of production issues. AI-based production can pinpoint the specific root cause of an 
issue in real-time during production. AI’s precision and ability to handle large numbers of potential 
root-cause factors is what drives this capability.  

• Avoid past mistakes and enable expertise retention. Over three quarters of manufacturing firms 
are concerned about their aging workforces.12 A primary component of their concern is losing the 
expertise that their skilled workers have amassed at specific manufacturing sites (e.g., the exact 
setting for a temperature for a particular product type). These sorts of insights are rarely recorded 
in an accessible manner, but skilled engineers and operators leave their marks in historical 
production data. Thus, while the experienced operator may know what to do in any scenario, a 
novice may leverage AI to sift through prior production runs and extract insights that resemble an 
issue at hand. AI can map challenges happening today to historical periods, filtering out 
interventions that did not work and focusing on those that did. In this way, AI can help new talent 
perform more efficiently, reducing waste and energy consumption during onboarding and beyond. 

• Improve yield. Production at scale is never 100% efficient: while 10 grams of ingredients may yield 
10 grams of a final product in the laboratory, 10 tonnes of ingredients may yield only 9 tonnes of 
final product at scale. Scaling production introduces inefficiencies caused by the challenge of 
operating large-scale machinery and prioritizing production speed.13 AI can help minimize this yield 
loss. By analyzing historical production data, AI can identify unexpected points in production where 
complex operational changes may lead to improved yields. AI is uniquely suited to learning the 
idiosyncrasies of large-scale manufacturing facilities and can provide specific recommendations on 
how to improve production yield for each site individually. 

• Enable recycling and circularity. Having traditionally relied on high-quality, low-variability raw 
ingredients, many industrial sectors are embracing recycled feedstock to reduce their carbon 
footprint, as well as increasing use of prior components and parts. Both could be considered 
increased circularity, potentially helping with cost, as well as carbon intensity. However, recycled 
and circular feedstocks typically exhibit low quality and certainly have high variability. This is the 
example from the steelmaking case study, with direct parallels in the chemicals, aluminum, glass, 
and paper sectors, among others. Embracing recycled feedstock not only reduces emissions during 
manufacturing, but also relieves demand on mining virgin ingredients in the first place. This aligns 
with the materials-efficiency objective highlighted in the sixth assessment report14 of the 
Intergovernmental Panel on Climate Change (IPCC). 

• Minimize energy consumption. Manufacturing facilities are not designed to minimize energy 
consumption; they are designed for safety. This means plants operate with conservative safety 
margins factored into all parts of production. This presents an opportunity for energy 
improvements while maintaining safety standards. This topic is a focus of the fifth assessment 
report15 of the IPCC and serves as an optimization target for AI as well. Digital control systems 
which automatically operate much of the machinery at modern manufacturing sites, can be 
orchestrated using AI to adapt to operating conditions to safely reduce energy consumption. 
Reinforcement learning techniques can explore energy efficiencies in a gradual and safe way, 
exploiting operating set points that provide the biggest energy savings while operating with the 
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safety margins that matter. Applications like these can provide net energy emissions reductions for 
plants with no hardware changes needed. 

• Adopt alternative energy sources. In some sectors, such as scrap-based steelmaking, production is 
shifting to using clean electricity, which provides a pathway to shifting towards green production. 
In other cases, however, the switch may not be so simple. In direct steelmaking, manufacturers are 
shifting towards hydrogen, biomass, and carbon capture. In cement, the use of alternative fuels at 
the kiln is steadily increasing, including hydrogen and biomass, as well as carbon capture. Adopting 
alternative energy sources, however, comes with its own new source of volatility. Alternative 
cement fuels can negatively impact clinker quality, forcing cement mills to continue using 
hydrocarbon-based fuels for stability.16 AI can help adapt to this new source of variability, enabling 
an increased, if not full conversion, to newer greener sources of fuels during production. 

• Adopt smaller and quicker batch manufacturing. Batch production, which encapsulates much of 
the steel and chemicals sectors, embodies a tradeoff between size and speed. Larger batches offer 
more opportunity to correct for mistakes and adapt to production issues, while smaller and quicker 
batches use less energy and offer production flexibility. Reducing the 17cycle time—the amount of 
time it takes to make a batch from start to finish—is a common challenge, compounded by the 
switching between different product types between batches. AI can help analyze patterns in high-
dimensional historical production data and recommend operational set points as production shifts 
quickly from batch to batch. Reducing cycle time comes with direct emissions reduction along with 
energy minimization, and typically requires no hardware changes to the plant. 

Box 5-1  
CASE STUDY: ALLOY ADDITIVE REDUCTION  
IN STEELMAKING 
In 2022, a Brazilian steel manufacturer using AI achieved 8% reduction in alloy additive 
consumption. This reduction came with a commensurate $3/metric ton cost savings and a 7.5% 
reduction in CO2e/metric ton.17 

This company achieved these results by  

1.  Acquiring recycled scrap metal for their production 

2.  Measuring the chemical composition of each batch of scrap 

3.  Leveraging AI recommendations during melting to add as little (if any)  
additives as possible 

4.  Predicting the risk of producing each batch of steel, trading off  
potential quality issues with emissions 

5.  Reducing the quality variation of their final product. 

Adopting AI as part of a plant’s operating workflow, manufacturers can  
progressively target high-opportunity use cases within their production. 
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(ii) Decarbonizing supply chains and adopting dematerialization 
strategies 
• Optimize manufacturing schedules. The production and storage of commodities are 

driven by market demands. Factories optimize their production schedules to minimize 
order wait-time while reducing switching costs between product types or grades. 
Inefficiencies in scheduling lead to superfluous production being stored on-site (leading 
to unnecessary emissions associated with moving large volumes of material) and 
switching costs (leading to unnecessary emissions due to keeping equipment running 
without producing any goods). AI can help with this scheduling process by optimizing 
complex production schedules to minimize such transitions and it can do so at greater 
speeds and accuracy than manual approaches. AI can also help forecast market demands, 
enabling manufacturers to prepare for anticipated market demand ahead of time.18  

• Minimize logistics overhead. Manufacturers and shipping companies collaborate to 
deliver billions of tonnes of material across the globe. Handling and routing such large 
amounts of material with precision is a complex operational task. Shipments that are 
kept in storage and/or unnecessarily shuffled around during this process lead to energy 
waste. Poorly planned shipping routes can add to the indirect emissions that come with 
transporting goods to their final destinations. AI can help with this process in two ways. 
First, AI can optimize shipping operations, such as terminals and ports, to minimize 
container movement while correctly loading and unloading shipments from one mode of 
transport to another. Second, AI can help with forecasting both weather conditions and 
market demand, enabling logistics companies to plan and reduce operational 
inefficiencies.19  

• Evaluate and adopt dematerialization strategies. The 6th IPCC Assessment Report 
highlights material efficiency as a key strategy in reducing the carbon footprint of 
manufacturing. This strategy involves increasing circularity of materials used during 
production, while consuming the smallest amount of new ingredients possible. It also 
involves designing and manufacturing of stronger, lighter, and better materials to reduce 
how much is needed for downstream applications. AI can assist with both objectives by 
targeting production practices that reduce waste—increasing stability with recycled 
feedstock—and precisely matching product specifications to production.20 AI can also be 
used to design materials for easier disassembly and recycling. However, material 
efficiency is not tracked the same way as energy efficiency, which poses a systematic 
challenge in this endeavor.21 
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(iii) Decarbonizing the impact of maintaining industrial equipment 
• Monitor processes. Industrial 

facilities are typically designed to 
operate for long stretches of time, 
ranging from chemical plants that 
operate with one day of downtime 
per week, to steel blast furnaces 
that can operate continuously for 
years at a time. Any unexpected 
issues or downtime cause 
unnecessary and often 
preventable additional emissions. 
Aluminum smelters can sometimes 
unexpectedly fail in a way that releases perfluorocarbons—a potent greenhouse gas. AI 
forecasting models can predict when this is about to happen, enabling operators an 
opportunity to proactively avoid such scenarios.22 Similarly, silicon levels in tapped iron of blast 
furnaces can indicate an unexpected cooling of the furnace—but only when it is too late to act. 
AI can forecast silicon levels in a blast furnace, enabling operators to pre-emptively avoid any 
furnace cooldowns that would cause avoidable emissions.23 

• Plan for maintenance. Scheduling maintenance for batch production is reasonably 
straightforward since downtime between batches can be used to service equipment. However, 
continuous-process machinery requires regular maintenance that causes a reduction in 
capacity, if not direct downtime for the plant. Like cleaning a filter that clogs over time, these 
maintenance procedures are typically conducted on a regular basis—regardless of the state of 
the equipment. However, as manufacturing plants adopt increasing variable feed- and fuel-
stock, continuous-process machinery can degrade at wildly differing rates. AI can be used to 
forecast the optimal time to service machinery, thus reducing downtime and the resulting 
unnecessary emissions that come from winding a plant down and up again.24 

C. Barriers and risks for AI in manufacturing 
Several barriers prevent the widespread adoption of AI in the decarbonization of manufacturing. 
They include the following: 

• Lack of incentive to decarbonize. A threshold issue is the incentive of manufacturers to 
decarbonize, which can involve expense, market risk, adoption of unfamiliar technologies and 
disruption of longstanding ways of doing business. Regulatory requirements or clear market 
rewards are the two reasons why most factories and logistics companies pursue 
decarbonization, but such requirements or rewards are often lacking. In the absence of 
incentives to decarbonize, AI tools that could help with this process will rarely be considered or 
adopted. 

• Lack of investment in digitalization. Manufacturing companies are often—culturally and 
operationally—anchored to the pre-digital era of the industrial revolution. While large 

Figure 5 – 3. Factories comprise thousands of interconnected sensors. 
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manufacturing companies are at various stages of embracing digitalization across their 
production and supply chains, small- to medium-sized businesses may need to first invest in 
digitizing their operations. This process may involve installing sensors, connecting them to 
databases, and maintaining an information technology foundation to support connecting all 
parts of the business. 

• Low digital literacy. Digitalization requires manufacturers to develop, hire or outsource 
personnel with expertise. Developing such talent in-house involves training internal domain 
experts with data literacy, storage, and manipulation skills. Hiring for digital talent often 
involves recruiting data scientists and data engineers to enhance existing staff in their work in 
this field. Some manufacturers may prefer to outsource such activities to consulting groups and 
other companies that provide such services. 

• Need for coordination across large organizations. Adopting AI in day-to-day workflows requires 
buy-in from many stakeholders. Manufacturing companies execute complex workflows that 
can involve up to dozens of departments. Team members must be given sufficient resources 
and time to build trust in AI-based strategies, which in turn should have clear deployment 
ownership. Results should be quantified and shared among stakeholders to further incentivize 
adoption. 

• Availability of recycled feedstock. Not every geography and economic market may have access 
to the same levels or quality of recycled feedstock. Individual recycling is an important 
challenge in recycling plastic products.25 Commercial recycling of commodities, such as steel, is 
well established in the United States, Europe, and Japan; similar workflows and markets are 
developing in South America, China, and India. Companies that lack consistent access to 
recycled feedstock may hesitate to adopt workflows, with or without AI, that rely on such 
sources.  

The adoption of AI in manufacturing also comes with a variety of risks. 

• Need for regular maintenance. Factories and logistics change over time. Any AI-based system 
that operates on real-time data must be carefully maintained. Deployed AI models should be 
checked regularly and updated based on the requirements of their applications. This may be a 
new workflow to which existing information technology groups may not be accustomed. 
Regular workflows to assess and maintain software systems apply to AI-based applications. 

• Additional/new safety procedures. Manufacturing and logistics facilities are dangerous places 
to work. Any change to a workflow must be accompanied with a careful investigation of any 
source of risk to human safety and health. AI-based systems must be validated to perform as 
expected under normal and abnormal operating conditions. Any personnel working with AI 
systems may require additional training. 

• Application of AI to maintain or increase emissions. As a general-purpose technology, we have 
no way of stopping bad manufacturing actors from applying AI toward use cases that either 
maintain or increase their carbon footprint. Regulatory pressure and market dynamics, along 
with other incentivization, are ways to minimize this risk.  
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CHAPTER 6:  

MATERIALS INNOVATION 
Colin McCormick 

Materials innovation is important for decarbonization, and 
artificial intelligence (AI) can play a major role in accelerating it. 
This chapter examines how improved materials can reduce 
emissions and enable carbon management, as well as specific 
areas in which AI can help. 

The search for novel materials with useful properties has been 
central to technology innovation for centuries. Ancient Romans 
developed novel concrete for bridges, aquifers and other 
structures, some of which have survived for millennia.1 In the 
modern era, Thomas Edison’s discovery of carbon filament for 
electric light bulbs in 1879 enabled these bulbs to last for long 
enough to be practical, leading to a fundamental transformation 
of lighting technologies and the eventual phase-out of whale oil 
and kerosene lamps.3 Similarly, Charles Goodyear’s discovery of a 
process to vulcanize rubber in the 1830s helped overcome the 
limitations of natural rubber, which melts in heat and cracks in 
cold. Goodyear (among others) worked for years to address this 
challenge, eventually discovering how to cross-link the long 
molecules in natural rubber to create a much stronger and more 
durable material.5  

These examples illustrate that most materials innovation 
throughout history has relied on insight, experimentation and 
serendipity. Edison’s search for an appropriate filament depended 
on general scientific insight and exhaustive material testing: his 
laboratory tried thousands of carbonized plants before finally 
identifying one that worked well. Goodyear’s discovery of vulcanization was largely due to a stroke of 
luck. Many other key materials—including carbon steel, ceramics, catalysts and polymers—have 
followed similar paths. Without a systematic, quantitative framework for determining how a 
material’s properties depend on its chemical and structural nature, there is only one feasible 
approach: innovators must laboriously find or synthesize many different materials, or many variations 
of the same basic material with slight modifications, and exhaustively test them. This is costly and 
time-consuming and creates a barrier to technological progress. 

  

 
Roman concrete enabled extraordinary 
construction projects, including the Pantheon, 
the world’s oldest building still in active use. 

 
The discovery of the vulcanization process 
transformed natural rubber into a highly 
durable, extremely useful material. 
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A. Materials innovation in climate technologies 
The performance of many clean-energy technologies is 
limited by the properties of key materials, including 
photovoltaics (PVs), semiconductors, magnets, catalysts, 
polymers, alloys and composites. Identifying new materials 
with improved properties could enable these technologies 
to achieve higher energy efficiency, lower costs, greater 
performance, longer service lifetime, higher energy 
densities and many other desirable characteristics. This in 
turn would allow these technologies to provide identical or 
improved services with lower net greenhouse gas 
emissions.  

Lithium-ion batteries are a good example of a technology 
that was greatly improved through the discovery of novel 
materials. Specifically, the cathode, anode and electrolyte 
materials in modern lithium-ion batteries are all the result 
of extensive fundamental and applied research. This 
includes the identification of lithium cobalt oxide (LiCoO2), 
lithium iron phosphate (LiFePO4) and other cathode 
materials beginning in the 1970s, as well as the 
identification of graphite for anodes and a variety of liquid 
and solid materials for the electrolyte.6 Before these 
materials were identified and successfully integrated into 
full systems the performance of batteries was much worse 
than today (lower energy density and total capacity). The 
cost of building battery-enabled technologies was 
correspondingly higher. Advances in these key materials 
therefore enabled improved performance that brought batteries into new applications, such as 
electric vehicles (EVs) and bulk storage of renewable electricity. Research into advanced battery 
materials is still ongoing and may open a path to even higher-performing batteries, such as all-solid-
state7 and sodium-ion technologies.8 

Advanced materials also play important roles in carbon capture and management technologies. 
Properties such as CO2 binding energy and kinetics, as well as long-term stability, determine the 
overall performance of materials used as sorbents and solvents for carbon capture and direct air 
capture (DAC) applications.9 Similar properties also determine the performance of catalyst materials 
in applications such as electrocatalytic reduction of CO2.10 Even in the case of CO2 transport for 
sequestration or utilization, material properties influence the durability and overall performance of 
bulk transport systems. 11  

 
Materials innovation enabled the development 
of lithium-ion batteries for electric vehicles 
(EVs), long-duration grid storage and other 
low-carbon technologies. 

 
Solar photovoltaic (PV) systems are the 
product of years of materials innovation and 
optimization. 
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There are many other use cases of advanced materials that are, or would 
be, valuable in enabling technologies to reduce greenhouse gas emissions in energy, industrial, 
transportation and other applications. These include solar PVs,12 wind turbine blades,13 hydrogen 
storage,14 fuel-cell electrodes and 
electrolytes,15 lightweight alloys and 
composites for vehicles,16 low-global 
warming potential (GWP) 
refrigerants,17 thermal-barrier 
coatings,18 desiccants for advanced 
HVAC,19 high-voltage direct-current 
(HVDC) power transmission,20 high-
temperature superconductors, 21 and 
high-strength permanent magnets 
(used in everything from wind 
turbines to fusion reactors). 22 

  

Box 6-1  
INNOVATION IN MATERIALS SYNTHESIS 
In some cases, the limitation to the performance of a technology could be overcome by a well-
known material that has superior properties, but a practical method to produce this material is not 
known. One such case is the general illumination LED bulb, now in common use. Although LEDs 
were originally invented in the 1960s, they were based on a material (gallium arsenide, GaAs) that 
can only emit red light. Researchers knew that gallium nitride (GaN) and zinc selenide (ZnSe) could 
enable white LEDs that could be used for general applications like building and street lighting. 
However, it was not until the development of the two-flow MOCVD (metal organic chemical vapor 
deposition) reactor in the 1990s that GaN crystals could be reliably produced.2  
This development led directly to commercial, white-colored LED lights with  
dramatically higher energy efficiency than incandescent and fluorescent  
bulbs, which are now gradually being replaced. (Notably, although LEDs  
have reduced the energy intensity of lighting significantly, global CO2  
emissions from lighting have not fallen because the demand for more  
lighting has offset these efficiency gains.4) 
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B. Computational materials development 
Key scientific advances in the 1960s changed the way materials 
are designed and discovered. New computational methods 
finally enabled researchers to go beyond simply relying on 
intuition and incremental experiments; these methods allowed 
them to directly calculate the properties of new materials just 
from their chemical makeup and structure (“ab initio”). For 
example, following the discovery of the first high-temperature 
superconductor (which was largely an Edisonian process guided 
by intuition), other researchers quickly applied computational 
modeling to better understand the superconducting effect. This 
approach led to the discovery of other, better high-temperature 
superconductors.23, 24 Ab initio modeling also led to materials 
discoveries for batteries, hydrogen storage, thermoelectrics, 
nuclear fuels and semiconductors.25  

As a result, materials research has increasingly shifted to 
computation. Advances in computing power, algorithms and 
data science have accelerated this trend. Governments have  
funded broadly integrated materials science projects that 
leverage information science tools to share advanced  

 
Innovative materials are important for enabling carbon capture and removal systems, such as this direct air capture 
(DAC) plant in Iceland (photo credit: Julio Friedmann). 

 
Yttrium barium copper oxide (YBCO) 
was one of the first high-temperature 
superconductors to be discovered. 
Image was created using published 
crystallographic information and the 
Crystalmaker® program. Author: Gadolinist 
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algorithms, provide compute resources, and disseminate the results of computations and experiments 
in increasingly massive material property databases. Some examples include The Materials Project 
coordinated by UC Berkeley,26 the NOMAD database hosted by Humboldt University of Berlin,27 and 
the MateriApps project hosted by the University of Tokyo.28 These projects contain hundreds of 
thousands to millions of entries on material properties and provide methods for users to run 
numerical calculations of material properties on high-performance computers. The scale of materials 
datasets is a consequence of the enormous number of stable materials that could theoretically exist 
by the laws of chemistry and physics (estimated to be more than the number of atoms on Earth29) 
even though only a tiny fraction have actually been synthesized. 

Notably, modern computational materials science consumes enormous computing resources. In 
recent years, roughly one-third of available supercomputing has been dedicated to these materials-
related calculations.30 

C. Applications of AI in materials discovery and design 
The complex nature of materials 
property predictions and the enormous 
amount of available data have sparked 
interest in using AI methods in 
computational materials science for 
several years. One key area where AI 
has been applied is directly predicting 
properties of new materials without 
performing full ab initio calculations. 
This approach trains AI models on large 
databases of previously computed 
and/or tested materials to learn 
quantitative relationships between 
atomic structure and relevant 
properties. This can save enormous compute time and cost. A recent application of this was the use of 
graph neural networks trained on data from the Materials Project to screen 31 million hypothetically 
possible crystal structures to identify roughly two thousand of them with promising properties for 
further investigation.31 This AI approach will probably remain less accurate than ab initio calculations  

for a long time but can provide enormous benefits by down-selecting candidate materials for more 
intensive, high-accuracy studies. 

AI can also be used to accelerate experimental characterization of materials, leading to much more 
efficient use of limited experimental resources. For example, x-ray diffraction (XRD) is a common 
technique for examining the crystal structure of materials (such as changes in cathode phases during 
battery charging) by measuring the pattern of diffraction of x-rays that hit a sample. AI models trained 
on large experimental datasets of diffraction patterns and material crystal structures can directly 
interpret new XRD data in real time, dramatically speeding up experiments.32   
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An enormous amount of prior materials research is available in scientific journal articles. Researchers 
typically survey the scientific literature before approaching a new problem, but the large number of 
relevant articles (often tens of thousands for a single material subtype) makes this process extremely 
difficult and prone to error and bias. AI in the form of natural language processing (NLP) can be used 
to extract information from these research articles and structure it systematically, known as 
“knowledge discovery.”33, 34 NLP models trained on non-technical language struggle to handle 
scientific text, but materials-research-specific language models with better performance have begun 
to emerge.35 With the broad introduction of large language models in 2022, progress in materials 
science knowledge discovery has begun to accelerate dramatically. 36  

The complexity of advanced materials means that the process used to synthesize (produce) them 
must be tightly controlled. Small changes in process parameters can result in different, less useful 
materials, so identifying and optimizing synthesis parameters is crucial. AI-based knowledge discovery 
techniques have been successfully applied to published materials literature to identify precise 
synthesis steps for key materials from thousands of research papers. For example, a neural-network-
based NLP method was used to search 22,000 journal articles and extract precise synthesis 
parameters for optimized titania nanotubes.37 

The use of generative AI is also growing rapidly within materials discovery and design. Generative AI 
can propose new hypothetical materials that are not currently in any materials database and may be 
dramatically different from those that are. This is particularly powerful for the materials “inverse 
design” problem, which starts with a desired property and uses an AI method to propose possible 
material structures that may have it. As an example, a generative adversarial network (GAN) was used 
to propose 23 entirely novel structures made from three atoms (magnesium, manganese and oxygen) 
that displayed excellent properties as photoanodes for water splitting.38 

D. Barriers 
Some important progress has already been made in applying AI techniques to computational materials 
discovery and design. More progress would be possible with expanded research budgets, including 
additional funding for AI-specific applications in materials science.  

While access to materials datasets and high-performance computing has been partly equalized across the 
globe thanks to high-speed internet connections (with notable exceptions), the same is not true for 
physical materials testing facilities. Real breakthroughs will ultimately depend on coupling AI-enabled 
computational materials discovery with high-throughput synthesis and testing/characterization. To enable 
this capability and broaden access to physical testing facilities, new automated and partly autonomous 
materials testing laboratories are needed, which would allow remote operation for materials 
characterization experiments. By combining machine learning (ML), AI, and robotics, these facilities could 



ICEF Roadmap 2023: AI for Climate Change Mitigation  

  

December 2023 Chapter 6: Materials Innovation - 64 

unlock broad global access to rapid iterations in materials design and testing, reducing the challenges of 
participating in advanced materials development for researchers in resource-limited countries.39  

The vast and growing network of materials databases also poses a challenge for progress. Better 
integration of these datasets, including better harmonization of their metadata, is needed. This would 
improve the ability of researchers to train models and query material properties across the full spectrum of 
existing data, avoiding silos and misinterpretations due to conflicting definitions. Explicitly encouraging the 
inclusion of null results or failed experiments on materials—an uncommon step in most scientific 
research—could broaden the value of these datasets and provide more balanced training data for AI 
models. Governments have difficulty acting on these issues unilaterally since the global materials science 
community must align on data exchange and metadata protocols. However, international standards bodies 
and scientific societies can lead the way through cooperative standards-setting efforts, potentially with 
government funding for support.40 

At a system level, the full life-cycle emissions implications of advanced materials are dependent on both 
the key property of interest (e.g., PV efficiency, CO2 adsorption capacity, etc.) and the emissions caused by 
synthesis (production) of the material. Unfortunately, relatively little attention has been paid to synthesis 
emissions when discovering or optimizing novel materials, even though different synthesis pathways can 
have significantly different emissions.41 More use of AI tools is needed in predicting greenhouse gas 
emissions that would be caused by synthesizing novel materials, preferably in parallel with materials 
discovery and design efforts. This application of AI would allow better understanding of the complete life-
cycle emissions that would result from using a novel material in energy and related technologies. 

Finally, advances in accelerating materials discovery and design with AI depend on improving the AI 
knowledge and skills of the materials science workforce. Key issues in AI, such as understanding the 
applicability of trained AI models to problems outside the domain of their training data and quantifying the 
uncertainty of model predictions, are challenging and likely unfamiliar to conventionally trained materials 
scientists.40 AI tools should therefore be incorporated as a central part of materials science education, and 
training should also be offered to AI experts who are interested in applying their skills to novel materials 
development. These education and training efforts could take place within traditional materials science 
curricula or as part of external courses that can ensure the most recent models, numerical algorithms and 
datasets are presented and continually updated.  
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Chapter 7:  

FOOD SYSTEMS 
Elena Méndez Leal, Kevin Karl and Alex Ruane 

Food systems—including food 
production, distribution, 
consumption, and waste disposal—
are critical to sustaining livelihoods 
and delivering nutrition worldwide. 
However, food systems contribute 
significantly to the climate crisis, 
accounting for over 30 percent of 
human-caused global greenhouse gas 
emissions1 (e.g., methane, carbon 
dioxide, and nitrous oxide). Climate 
change, in turn, has a significant and 
growing impact2 on food systems. 
Climate change increases heat stress 
and can lead to deteriorating soil 
health, for example, slowing 
agricultural productivity and reducing 
the nutritional content of crops and 
livestock. The cascading impacts of 
climate extremes on agricultural 
production are likely to destabilize 
global food security, endangering the 
livelihoods of billions of people and 
threatening public health. 

A. Food system greenhouse gas emissions  
All parts of the food system – from land use change to waste disposal – result in greenhouse gas 
emissions. 

(i) Land-use change  The conversion3 of natural ecosystems such as forests, marshes and grasslands 
into land for agriculture . Eighty percent of deforestation and land degradation is due to land-use 
change intended for agricultural production. This is a significant contributor4 to carbon dioxide and 
nitrous oxide emissions. Sustainable intensification can spare land from conversion and take land out 
of agricultural production. Well-designed land-use management strategies5—such as agroforestry, 
cover cropping and reductions in tillage—can preserve soil health and enhance carbon sequestration 
in working lands. 
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(ii) Production  The inputs and operations needed to produce food with agriculture. For example, 
existing agricultural practices6 contribute to copious7 methane production (e.g., through flooded rice 
fields and enteric fermentation in livestock) and nitrous oxide production (e.g., over-application of 
synthetic fertilizers). Improving livestock management, including rotational grazing and optimized 
feed, and implementing precision agriculture techniques to reduce fertilizer and pesticide use can 
help lower total emissions. 

(iii) Supply chains  The processing, distribution, storage, trade, marketing and handling of food 
following production and before consumption. Food-system supply chains have considerable 
potential to employ more sustainable strategies, from increasing penetration of renewable energy 
into food cold chains8 and decreasing energy expenditures across all steps of the food supply chain 
via improved logistics and reductions in post-harvest food loss. 

(iv) Consumption and Waste Processes related to consumer food preparation and to the disposal of 
food waste. Substantial carbon dioxide emissions occur9 in the production and combustion of 
biomass and fossil fuels for cooking. The disposal of food waste in landfills emits significant amounts 
of methane10 globally. Food waste and consequent emissions also occur during food production, 
storage, and transportation. 

There is substantial opportunity to mitigate the climate impact of food systems while improving the 
resilience of food systems to climate shocks. Mitigating greenhouse gas emissions from food systems 
will require, among other efforts, the adoption and improvement of sustainable practices6 in land 
use, agriculture, supply chains and consumption processes. Integrating renewable energy sources 
and energy-efficient technologies will also be essential to reducing greenhouse gas emissions. All 
these efforts could benefit from leveraging technological innovation to optimize the dual needs of 
improving food security and reducing food system greenhouse gas emissions. With sufficient, 
relevant and accessible data, the emergence of artificial intelligence (AI) carries unique potential to 
complement existing strategies to improve food-system mitigation efforts. 

B. Using AI to mitigate food system emissions 
AI tools represent a sea change in terms of how data are identified, defined, interpreted and 
optimized. By leveraging AI technologies, real-time and historical data can be efficiently harnessed to 
model and anticipate outcomes and drive significant improvements in each stage of the food system 
in order to minimize environmental impacts. 

AI can make food systems more efficient. For instance, AI can optimize 
agricultural practices by integrating data from various sources like soil 
sensors and satellite imagery to create precise nutrient and fertilizer 
management plans. Machine learning (ML) simulations11 can further 
analyze these data to recommend fertilizer application schedules that 
minimize nitrous oxide emissions while maximizing crop yields. ML 
simulations can also analyze optimal fertilizer applications across a range of 
projected climate conditions.  AI can aid in monitoring and predicting soil 
health, moisture levels and disease risks, enabling proactive crop 
management and minimizing the demand for agricultural inputs. Similarly, 
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AI applications can explore optimal feedstock for Biomass with Carbon Removal and Storage 
(BiCRS)12 by analyzing data on biomass characteristics, growth rates and carbon sequestration 
potential. AI can identify the most suitable biomass species or crop varieties for efficient carbon 
removal and storage by considering factors such as regional climate. Such analyses can accelerate 
the development climate-smart systems in ways that are both traditional and completely novel—for 
example, AI models can test combinations of farm management, equipment, breeding, financing, 
and policy instruments that do not yet exist. 

Another example of precision agriculture is CYCLESGYM, an innovative tool that employs 
simulations13 (i.e., reinforcement learning) to improve crop management strategies. CYCLESGYM can 
create virtual farms simulating different crops, weather conditions and soil properties. With 
adjustments to different agriculture management strategies, researchers and farmers can set custom 
observational spaces and reward mechanisms that explore various crop growth and environmental 
outcomes over short-term intervals that provide a balance between economic viability, greenhouse 
gas emission mitigation and general environmental sustainability in food production. For example, 
the CYCLESGYM environment can fine-tune the use of nitrogen-based fertilizers and water supply, 
strategize how to minimize nitrogen loss and environmental impact, maintain crop yield objectives 
and reduce crop wastage.   

Other applications of AI in food systems include augmenting renewable energy generation by 
optimizing land use for multiple purposes, forecasting pest and disease pressure for proactive 
controls, identifying opportunities for multi-cropping or intercropping, improving logistics and energy 
consumption during food transportation and storage and enhancing soil carbon sequestration 
efforts. AI tools are also used to rapidly develop alternative protein products14 with a much lower 
carbon footprint than most animal-sourced foods. AI is being used to scale food loss and waste 
reduction, such as intelligent harvest timing to prevent food spoilage. As an overarching technology 
for data identification and integration, AI can also help compile information15 on successful 
greenhouse gas mitigation strategies in food systems to evaluate best practices across a variety of 
contexts (see Table 1 below). 
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Title Description 

Land-use change Map renewable energy solutions and classify land. Through AI methods, such as deep learning, AI is 
improving land classifications16, which can improve efforts to integrate biomass production (as a renewable 
energy source) into agricultural landscapes. Other models using simulations can indicate17 land use as the 
climate changes as well as analyze18 and optimize future land uses to assist in emission-reduction efforts 

 Balance solar resources for food and energy production. AI models can predict how to use land for 
both sustainable food and energy production. When solar panels are located over crop fields, for example, 
AI can predict optimal tilt and shading19 to maximize power production while protecting crop growth 

 Observe and predict deforestation events. Deforestation is a significant contributor to greenhouse gas 
emissions. Monitoring and predicting deforestation and related events20 for agricultural expansion could 
help minimize the carbon footprint of food production 

 Soil carbon sequestration to reduce emissions and mitigate climate change. Satellite data fed into an 
image-based simulation model21 can accurately predict the storage potential and management of carbon 
dioxide in soils and inform policy and agricultural practices around land-use change and regenerative 
agriculture activities (e.g., agroforestry and tillage) 

Food Production Enhance productivity. Precision agriculture employing AI can increase efficiency and conservation gains 
without sacrificing yield outcomes. Examples include watering and feed management, controlled crop 
management22, 23, automation24, and advanced livestock and crop health monitoring, including identifying 
field stresses and impacts from pests and pathogens25 through image processing and neural networks. In 
addition, AI can help decrease food loss during harvest26 and maximize the potential of using bioenergy 
and biomass27 for greener farming inputs, such as fertilizer 

 Derive new or enhanced models of farming systems28. This can include exploration of alternative 
solutions, filling observational gaps to better calibrate existing models, creating low-cost model emulators to 
scale analyses, and develop data-driven hybrid models that enhance predictive power 

 Forecast crop yield and loss. With remote sensing and AI, farmers can better prepare for crop and yield 
loss to weather29 events or other impacts of climate change (e.g., reducing on-farm and post-harvest loss). 

 Develop alternative proteins. AI methods can be leveraged to improve innovation30 around plant-based 
and cultivated meat, which can lead to the consumption31 of food with smaller environmental footprints32. 
Nonetheless, at scale, the production of alternative proteins also carries an emission risk and currently 
depends on limited crops that could be at risk in future climate scenarios 

Supply Chains Optimize food supply chains. AI can increase the efficiency33 of food supply chains using current and 
historical data. Through simulations, AI can predict and reduce actual energy usage in procedures needed 
for transportation34, such as in cold chains35. This application can include providing optimal routes while 
weighing other relevant considerations, such as transportation resources and route maintenance 

 Improve food packaging. Through simulations and predictive analytics, AI can assist in improving the 
design, materials and energy usage for packaging36 food items 

Consumption  
and Waste 

Forecast consumption patterns. AI simulations can help predict and emulate food demand, nutritional 
needs, product shelf life and actual restocking37 requirements to limit food disposal38 and reduce 
overallocation of products38. Accurately meeting real needs for consumption can improve unnecessary39 
emission-contributing activities 

 Streamline disposal processes and sort waste. AI can assist in improving40 management of disposal 
processes, including forecasting waste amounts, sorting recyclables and compostable waste, and 
decreasing methane gas emissions41 from landfills 

Table 1: Selected examples of current AI applications for food-system emission reduction. 

 

  

https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12816
https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12816
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AI is best conceived as a set of complementary tools, rather than a solution in itself. To ensure 
sustainable and equitable outcomes, proper implementation of AI technologies should be grounded 
in scientific knowledge, physical constraints, well-defined public policy objectives, ethical 
considerations and a nuanced understanding of the complex operations of food system actors and 
changing baselines. AI models are susceptible to misuse and misinterpretation if not applied correctly 
or if used in an incorrect context, leading to unsuccessful interventions or maladaptation. For 
example, an AI model that seeks to maximize crop yields in the short-term with limited information 
on sustainable agriculture practices, local knowledge, or climate and weather variations could over-
emphasize the promotion of monoculture crop production and harmful fertilizer use. As such, AI 
models must be trained with diverse datasets, consider optimization across multiple objectives and 
implement policy interventions that promote sustainable and responsible AI use in food systems. 
Nonetheless, the possibilities for integration and application are limitless—by strategically harnessing 
the potential of AI within a comprehensive framework, we can accelerate progress in mitigating 
food-system emissions and foster a resilient and sustainable global food system. 

C. Barriers and risks to AI applications in food systems 
Using AI simulations and models 
for food-system emission 
mitigation is associated with 
barriers and risks that require 
careful attention. First, a lack of 
capital may constrain widespread 
adoption of AI technology since 
the cost of AI tools (e.g., remote 
sensing monitors, computational 
power), data availability, 
maintenance needs and other 
access limitations are likely to prevent resource-constrained farmers from employing them. 
Moreover, concerns surrounding data privacy, security and market competitiveness may limit the 
willingness of food-system actors across the supply chain to employ AI-driven solutions and 
participate in data-sharing.  

Importantly, the efficacy of AI models heavily relies on the quality and availability of input and output 
datasets. Insufficient or incomplete data on food-system processes can lead to inaccurate or 
misleading forecasts, especially under novel climate scenarios, potentially undermining the efficacy 
of emission-reduction strategies. Data access and intellectual property barriers from agribusinesses 
can impede the use of AI in designing comprehensive and inclusive mitigation strategies. In some 
cases, just because AI models could be applied does not mean they should be applied, or that they 
are an improvement on existing empirical models and analyses. Establishing proficient technical 
expertise and knowledge-sharing across food-system actors is important to ensure appropriate and 
effective application of AI technologies.  
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Finally, striking a balance between food-emission reduction objectives and other food-security 
imperatives is both a key design constraint and a significant obstacle. Finding a way to limit our footprint 
while increasing food security globally is not straightforward, especially with many regions relying on 
imports for general access and nutrition security. 

D. Key considerations in using AI to mitigate food-system emissions 
(i) Develop protocols for stakeholder-driven AI applications and tools across food systems. AI solutions 
should employ human-centered design principles focusing on the end user, such as farmers, factory 
managers and retailers. In addition, applications should be developed with input from relevant experts, 
scientists, engineers and policymakers to increase opportunities for seamless and effective AI use in food 
systems.  

(ii) Increase transparency, accountability and standardization in AI decision-making and data collection in 
food systems. Encouraging larger and more shareable data collection alongside standardized AI 
approaches to food-system problems can increase understanding of factors influencing emission-
reduction strategies and knowledge sharing around practical AI applications and methods. Such practices 
lead to more informed and targeted interventions across the food supply chain. 

(iii) Expand and scale existing technologies to effectively mitigate food-system emissions. Capitalizing on 
existing AI technologies and initiatives that have demonstrated promise in curtailing emissions and 
improving food-system processes is crucial. Scaling AI-driven interventions in areas such as precision 
agriculture and energy-efficient supply chains can lead to more sustainable and efficient resource 
management and global food provision.  

(iv) Invest in AI research and innovation explicitly tailored to food systems. By dedicating resources to 
developing cutting-edge AI technologies and models for food production, distribution, consumption and 
waste disposal networks, novel and more effective approaches for mitigating food-system emissions can 
be identified and implemented. 

(v) Promote collaboration and public-private partnerships to facilitate scalable emission-reduction 
strategies across land use, production, distribution, consumption and waste. Collaboration between 
government, researchers, private companies, farmers and other relevant stakeholders allows for more 
seamless integration of AI technologies and practices across various stages of the food supply chain, such 
as optimizing transportation logistics, accurately predicting demand and reducing food waste. 

(vi) Ensure inclusivity and accessibility so relevant stakeholders within the food system have the 
opportunity to benefit from AI-driven strategies and contribute to a lower-emission future. Efforts 
should consider improving access, knowledge sharing and technical assistance for small-scale farmers 
and marginalized communities. Initiatives to reduce food-system emissions using AI technologies should 
also align and consider other objectives of food security, health and safety.  

By optimizing agriculture practices through AI, embracing data-driven decision making, investing in AI 
research for food systems, fostering collaborative partnerships and prioritizing technology access for all 
stakeholders, AI can play a transformative role in mitigating food-system emissions, enabling a more 
sustainable and resilient global food and climate future.  
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Chapter 8:  

ROAD TRANSPORT 
Ruben Glatt and David Sandalow 

Road transport is a critical part 
of the global economy. Current 
modes of road transport rely 
heavily on fossil fuels, producing 
roughly 18% of global energy-
related carbon dioxide (CO2) 
emissions.1, 2 Strategies for 
reducing CO2 emissions from 
road transport include deploying 
electric vehicles (EVs), 
sustainable biofuels and 
intelligent transportation 
systems, as well as greater use 
of more efficient modes of transit.  

Vehicle electrification is an especially important strategy. Life-cycle greenhouse gas emissions from 
EVs are already significantly lower than those from comparable vehicles with internal combustion 
engines. (Emissions benefits vary based on regional differences in energy generation. One recent 
study found EV lifecycle emissions were lower by 66–69% in Europe, 60–68% in the United States, 
37–45% in China and 19–34% in India.3) As electric grids decarbonize, EVs will contribute even more 
to reducing emissions. Barriers to more rapid deployment of EVs include their up-front purchase 
price and driving range, both of which can be addressed with battery innovations.  

Sustainable biofuels also have an important potential role in decarbonizing road transport. The 
energy density of biofuels make them an attractive option for heavy duty vehicles, including trucks 
carrying large loads over long distances.  

Intelligent transportation systems (ITSs) also have potential to reduce carbon emissions from road 
transport. ITSs integrate sensor and communication technologies with data processing, analyzing 
vast amounts of real-time data to plan, monitor and control transit. Shifts from personal vehicles to 
shared vehicles or public transport are also important. Data-driven algorithms can be used to 
promote this shift by optimizing public transport to make sure riders have low wait times and can get 
to their destinations in a timely and cost-effective manner. 
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A. Using artificial intelligence (AI) to cut road transport emissions 
AI has significant potential to help 
reduce greenhouse gas emissions 
from road transport. Many solutions 
are still in the research stage but 
show great promise in experimental 
settings or simulations. To realize 
AI’s immense potential to reduce 
road transport emissions, AI 
solutions must be built into 
commercial products, integrated 
into public infrastructure and 
deployed in a safe and responsible 
manner. 

The emerging capabilities of machine learning (ML) are opening up new opportunities to reduce 
emissions throughout the road transport value chain.4 AI can play an important role in three core 
areas: (1) batteries and biofuels, (2) intelligent transportation systems and smart infrastructure and 
(3) shifts towards modes of transportation that emit less carbon.  

Realizing the full potential of AI in these areas will require more data and improved ML methods. 
Together, they can provide a robust foundation for predictive analytics and decision-making in 
scenario simulations. While algorithm development and improved computing hardware are 
important, near- to mid-term advances primarily depend on the availability of data. In combination, 
new data sources and cutting-edge theoretical insights can maximize the impact of recent ML 
advances. 

(i) Batteries 
AI has the potential to play a major role in reducing carbon emissions by improving battery design, 
optimizing battery usage and promoting battery recycling.   

For instance, AI has been shown to help improve battery design by speeding the process of material 
discovery. Discovering new materials is a complex task comprising two core challenges.5 The first 
challenge involves determining the right chemical components that, in combination, exhibit certain 
characteristics and develop desired properties. The second challenge involves finding a structure that 
provides a stable solution. The key to this process often lies in reducing the very large number of 
possible solutions to a small number that can be evaluated in real-world experiments in a more cost- 
and time-effective manner.6 ML can increase accuracy when predicting the properties of materials 
and speed down-selection of possible solutions.7 
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Major ML-driven breakthroughs 
and innovations in battery 
materials – including nickel 
cathodes, silicon anodes and novel 
electrolytes – are already 
increasing capacity and reducing 
the cost of EV batteries.8 More 
progress could be achieved 
through ML investments that 
support collaborations between 
industry and academia based on 
data, model and knowledge 
sharing such as the U.S. Joint 
Center for Energy Storage Research and the European Battery 2030+ Initiative.9  

AI can significantly enhance battery use-phase processes. With data on energy prices, grid load, 
driving patterns, battery health and other factors, AI methods can optimize charging schedules for 
EVs with reinforcement learning.10 AI-assisted battery charging can cut electricity costs, prevent 
overburdening of the power grid, prolong battery lifespans and increase vehicle availability, 
particularly for EV fleet providers.11 AI tools can also optimize the charging process directly while 
considering battery-aging effects and environmental conditions (such as temperature) to prevent 
chemical aging. Examples include (1) replacing rule-based charging strategies with Bayesian 
optimization combined with a linear-regression prediction model to define an extreme fast-charging 
protocol that maximizes battery cycle-life and reduces the traditional experimental-based approach 
from 500 to 16 days6 and (2) adaptive multistage constant current/constant voltage charging 
strategies based on a particle swarm optimization approach.12  

Another way to decrease the carbon footprint of EV batteries is to improve recycling and reuse.13 AI 
can improve processes based on pyrometallurgical, hydrometallurgical and biological recycling to 
recover precious raw materials, while supporting diagnostics to evaluate the fit and expected 
characteristics for a second life. Examples of these applications are (1) useful-life forecasting,14 (2) 
ML-enhanced automated disassembly and quality control that integrates computer vision and time-
series prediction,15 (3) optimal parameter setting for bioleaching processes for material recovery 
based on a random forest regression model,16 and (4) applications for battery life-cycle, waste 
recycling and material recovery.17 
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(ii) Biofuels 
Sustainable biofuels can help decarbonize road transport. The most promising applications are with 
heavy duty vehicles, such as trucks carrying large loads long distances. (Sustainable biofuels can also 
help decarbonize air and marine travel.) 

AI can play an important role in developing sustainable biofuels. Applications include image 
segmentation for cell analysis in microalgae and modeling time series in the bioenergy conversion 
process. For new biofuels, AI already plays an important role in predicting and optimizing highly 
complex non-linear bioenergy systems. When it comes to producing biofuels from biomass, so far 
most of the literature involving AI focuses on thermochemical processes,18 however biological 
processes offer a promising research direction.19 AI models can also help evaluate biofuel 
infrastructure requirements and support policy making and long-term planning.20 

(iii) Intelligent transportation systems and smart infrastructure 
ITSs integrate advanced information collection, data processing, communication and sensor 
technologies into transportation networks. ITSs include technologies such as real-time traffic data 
analysis, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, automatic 
number plate recognition and advanced vehicle control systems.21  

Smart infrastructure refers to physical infrastructure embedded with sensor technology, digital 
connectivity and data analytics. In the context of road transport, smart infrastructure includes 
intelligent traffic signals that adjust to real-time traffic conditions, road sensors that detect and 
report issues such as potholes or icy conditions, and digital signs that provide real-time information 
to drivers.  

ITSs and smart infrastructure have significant potential to help reduce carbon emissions in road 
transport. These technologies could be at the heart of a more sustainable and carbon-free 
transportation system.  

Box 8-1  
RECOMMENDATIONS 
• Encourage collaboration between industry and academia to build better data sets and 

encourage joint model development and knowledge exchange for material research 
• Support development of large-scale non-linear surrogate models to  

improve prediction of material properties 
• Integrate AI-driven management systems in the battery life-cycle to  

extend time of use and optimize raw material efficiency 

• Increase simulation capabilities to evaluate life-cycle and  
infrastructure impact of innovative fuels 



ICEF Roadmap 2023: AI for Climate Change Mitigation 

December 2023 Chapter 8: Road Transport - 79 

AI plays a central role in maximizing the 
potential of ITSs and smart infrastructure. 
AI’s power to analyze extensive real-time 
data from multiple sources could be a 
game-changer. Theoretical studies have 
shown AI’s ability to optimize traffic flow, 
decrease congestion, enable dynamic 
traffic light sequencing, suggest smart 
routes and model traffic predictively to 
foresee and alleviate congestion. While 
real-world adoption and insights are still 
scarce and not well-documented, some 
cities already have implemented pilot studies to investigate real-world implications. The city of 
Phoenix in the United States saw a 40% decrease in vehicle delay time after implementing an AI-
driven traffic management system. In Calabria, Italy, a pilot program reduced total travel time by up 
to 55% through adaptive real-time control of traffic signals for connected vehicles (CV).22  

In public transport, AI can be used to predict passenger loads and optimize schedules and routes, 
enhancing service efficiency and user satisfaction.23 AI’s role in predictive maintenance can also help 
foresee potential infrastructure issues in public transit, preventing failures or delays. Finally, by 
processing and analyzing ITS data, AI will be able to aid in informed policy decisions and strategic 
planning, leading to greener, more efficient public transit systems. The infusion of AI into ITSs is 
emerging as a cornerstone strategy in the shift toward lower emissions and heightened efficiency in 
public transit. 

The data needed for successful AI applications can be provided by static or mobile sensors. Sensor-
driven infrastructure components—collecting and transmitting data—are essential.24 These include 
traffic sensors at intersections or along roadways, smart traffic lights with sensors to monitor traffic 
and pedestrian activity, road weather information systems that track atmospheric and pavement 
conditions, and smart parking sensors that detect vehicle presence. Sensors on bridges, tunnels and 
roads to facilitate predictive maintenance, as well as environmental sensors to monitor conditions 
like air quality and emissions, are also important. In the realm of CVs, sensor-driven infrastructure 
can dynamically integrate vehicle sensors—such as LiDAR, radar and cameras—in ITSs to perceive 
the surrounding environment through edge analytics.25 By offering continuous, real-time data, a 
sensor-driven infrastructure enables AI systems to significantly enhance the operational capabilities 
of infrastructure, helping route emergency services, control traffic and respond to demand changes 
in public transport. However, the massive amounts of data require smart integration with cloud-
based storage and potentially large computing capabilities that may have a negative impact on net 
emissions.26 

AI-driven simulation has significant potential to reduce road transport emissions, delivering better 
results than conventional algorithm-based simulations by capturing complex patterns and 
relationships in transportation data.27 This can provide a wealth of insights, including in optimizing 
infrastructure planning, forecasting energy demand and evaluating potential transportation system 
policies.28 AI simulations can help identify where investments in charging stations and bicycle lanes 
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can best reduce emissions, for example. Linking transportation and energy systems in AI-driven 
simulations can significantly advance the evolution of ITSs, contributing to more sustainable and 
efficient transport networks. A 2021 Latvian study, for example, showed the potential of different 
policy instruments to reduce CO2 emissions 30% by 2030, concluding that more research and a 
tighter coupling between the transportation and energy sectors are needed to reach the ambitious 
goals of the European Green Deal.29 

AI can play an important role in bidirectional EV charging.30 With bidirectional charging capabilities, 
EVs can deliver power to homes (V2H), businesses (V2B) or the electric vehicle grid (V2G). Together, 
these applications are sometimes referred to as V2X or “vehicle-to-everything”. V2X technologies 
provide homeowners and businesses with energy security and help grid managers overcome 
shortages or deliver ancillary grid services. Reinforcement learning algorithms based on user 
preference and price signals are a potent tool for guiding the charging and discharging in V2X 
systems.31 ML can also be used in charge-management systems to guide EVs to charging stations to 
reduce negative effects during peak charging times.32 The mobile storage can also be used to 
improve energy performance of public buildings by using an ML-based V2G strategy to reduce the 
carbon footprint of buildings supported by energy consumption and cost predictions.33 

As simulations become more powerful, more data are needed and real-world experiences can 
provide the best insights. Communities, utility providers, fleet operators and vehicle manufacturers 
could initiate more pilot projects such as dynamic traffic light control systems, which leverage real-
time data from GPS, traffic flow sensors, transportation network health and weather updates to 
optimize the sequence and timing of traffic lights using ML methods. These pilot projects can 
enhance traffic flow, reduce congestion and curtail fuel consumption, however securing a large 
enough number of participants will be key to gaining meaningful insights. Other initiatives could 

Box 8-2  
RECOMMENDATIONS 
• Increase investment in sensor-driven infrastructure components that can provide data for  

ML models to support real-time decision making and planning efforts 
• Establish privacy regulations for data collection, storage and use in AI applications in 

transportation. 
• Support infrastructure research that extends simulation capabilities to  

better capture the interactions between transportation and energy  
infrastructure   

• Establish large-scale pilot projects for intelligent transportation  
systems in collaboration with utility provider, fleet operator and  
vehicle manufacturer 

• Establish standards for communication technology and protocols  
for vehicle-infrastructure communication 
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involve predictive maintenance of road infrastructure with sensors that monitor wear and tear, 
schedule preemptive maintenance and mitigate critical failures.34 Such collaborative, large-scale 
projects not only improve transportation efficiency, safety and user experience, but also contribute 
significantly to reducing carbon emissions. 

(iv) Promoting modal shift 
Modal shifts—moving from one type of transportation to another—can significantly reduce 
emissions from road transport. Leading examples include shifts from private vehicles to public transit 
and from solo driving to car sharing. Such modal shifts require behavior changes and often depend 
on transit systems that offer an array of mobility options.  

AI can serve as a powerful tool in driving behavioral change that contributes to sustainable mobility. 
AI-driven approaches encourage the use of public transportation in several ways:  

• First, by harnessing ML algorithms to analyze various data sources, AI-driven approaches can 
predict public transit demand, allowing for optimal route planning and strategic relocation that 
enhances the convenience of public transit.  

• Second, by underpinning integrated mobility platforms, which process real-time information 
from multiple transport modes and propose optimal route options, AI platforms can nudge 
users towards public or shared transport. In addition, AI-guided autonomous public transit 
could extend the reach of public transport to regions where traditional services may not be 
economically viable, thus decreasing reliance on private vehicles. 

• Third, by producing personalized recommendations and effective gamification techniques such 
as reward systems, challenges or social competitions, AI-driven approaches can incentivize and 
engage commuters in choosing sustainable transportation options.  

• Finally, by predicting maintenance issues in public transport vehicles, AI-driven approaches can 
improve the dependability of these services by minimizing downtime. Consequently, AI can 
make public transportation more efficient, reliable and appealing, playing a crucial role in 
curtailing private vehicle usage and overall transport activity. 

AI can also enable shared mobility solutions, which can significantly cut down on energy 
consumption and greenhouse gas emissions.35  

• AI can help manage shared vehicle fleets, ensuring that vehicles are distributed effectively 
based on anticipated demand, reducing waiting times and making shared mobility more 
effective and attractive.36 

• AI can also personalize the shared mobility experience by understanding users, suggesting the 
most suitable shared options and facilitating dynamic pricing with prices based on supply and 
demand to balance resource utilization and maintain service attractiveness.37 

• AI-driven predictive maintenance can keep shared vehicles in optimal condition, maintaining 
energy efficiency, reducing downtime and enhancing the reliability of shared mobility 
services.38  

Thus, through these measures, AI can make shared mobility a more appealing alternative to private 
vehicle use, leading to a significant reduction in overall transport activity. 
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Autonomous vehicles (AVs) and more specifically autonomous electric vehicles (AEVs) have the 
potential to significantly shift transportation modalities, steering us away from a dependence on 
conventional, individual-owned internal combustion engine vehicles and toward a new era of shared 
electric and autonomous transport. AI can be used to enhance accessibility and convenience, as 
route optimization and vehicle distribution make AEVs that are integrated into shared mobility 
platforms highly reliable and accessible. These features encourage a shift away from private vehicle 
ownership. Furthermore, AEVs can potentially lower operating costs due to their electric drivetrains, 
a benefit that AI can augment by optimizing energy usage. In terms of infrastructure use, AI enables 
AEVs to operate more efficiently, through measures like platooning, smart parking management and 
route selection. This efficiency reduces congestion, energy use and urban space requirements. 
Additionally, the environmental impact is minimized as AEVs produce no tailpipe emissions and AI 
aids in optimizing energy usage. Lastly, AI can facilitate the integration of AEVs with public transit, 
enhancing first-mile and last-mile connectivity, making public transit a more appealing choice and 
further driving the modal shift.  

 

B. Barriers and risks 
While the potential of AI in revolutionizing road transportation is immense, several barriers must be 
addressed to realize this potential. 

A first barrier is lack of data. As noted above, data on a wide range of topics are required to deploy AI 
in integrated road transportation systems. Sensors, smart infrastructure, CVs and other tools will be 
needed to collect such data.   

Second, uniform standards and protocols for sensor data collection and communication are 
essential. In a modern grid, a vehicle can serve as a communication node and operate as a channel to 
interconnect the electricity grid, traffic network and communication network.39 In this context, 
developing common standards in V2V and V2I communication is important for promoting seamless 
interoperability. A standardized communication framework enables vehicles to exchange information 
effectively with their environment. This capability provides additional data that can inform local 

Box 8-3  
RECOMMENDATIONS 
• Encourage technology adoption in public transport to increase  

analytics capabilities 

• Develop regulations and incentives to facilitate the use of shared  
mobility solutions 

• Support development and implementation of AEVs to  
increase vehicle efficiency 
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predictions and decision making, reducing emissions while increasing the efficiency and safety of the 
transportation system. 

A third barrier is a shortage of personnel with the needed training in and familiarity with AI. AI 
experts and software developers are needed, but—at least as important—transport operators and 
regulators must be equipped with the necessary skills to consider and evaluate AI options. 

The use of AI in road transport also creates risks that must be addressed.  

First, privacy interests can be threatened by the extensive data collection needed for many 
applications. Those data could potentially reveal a great deal about an individual’s habit and actions. 
Societal norms are only beginning to be established with respect the collection, distribution and use 
of data in this area.    

Second, the use of AI in road transport creates risks of bias. For example, training data sets may 
sample more heavily from wealthy neighborhoods than poor ones. Inadvertent discrimination 
against certain groups or areas is possible. Close attention is required to minimize the risk of 
inadvertent bias emerging from use of AI.  

A third and serious risk is higher emissions as a result of deploying  AVs.40  

• Cheap, convenient on-demand mobility may overshadow alternatives such as walking, cycling 
and public transport. Drivers may be more prone to take longer trips when driving requires 
little attention. The result could be more vehicle kilometers traveled and greater emissions.41  

• In addition, rebound effects can occur when savings from efficiency improvements lead to 
increased demand for a product, reducing or even negating the original savings.42  

• As AVs and smart infrastructure are algorithm-driven, malfunctions could result in significant 
inefficiencies, unexpected behaviors or accidents that require corrective actions, potentially 
leading to additional carbon emissions. 

Predicting the impact of AVs on road transport emissions is challenging due to several factors 
including ongoing technological development, market evolution and regulatory actions. To address 
potential negative impacts, a holistic and sustainable approach to integrating  AI in the 
transportation sector is crucial. Careful planning will be necessary to prevent unintended 
consequences and manage potential increases in vehicle usage. 

As a final consideration, the advent of foundation models, prompted by recent advances in large-
language and vision models, has marked a significant shift in our approach to problem-solving. These 
models, with their capacity to handle multi-modal input and domain-specific expertise, have the 
potential to revolutionize numerous fields. However, their applicability in the realm of road transport 
is relatively uncharted. Potential applications for foundation models may include autonomous driving 
and the control of intelligent transportation infrastructure, however their impact is not yet clear.43 
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Chapter 9: 

BARRIERS  
Alp Kucukelbir and David Sandalow 

Five groups of barriers impede the development and application of artificial intelligence (AI) to climate 
change mitigation: data, people, computation, cost and institutions. 

A. Data  
AI requires significant amounts of data, from which it extracts patterns. Data-related barriers to the use 
of AI for climate change mitigation include the following:  

• Data availability. This is a threshold issue for AI. Without available data, AI tools have limited 
value. Data quality1 can be as important as data quantity, as more data is typically good but not 
always better.2 

• Data accessibility. To be useful for AI, data must not only exist but also be accessible. Inaccessible 
data inhibits application of AI. Both AI experts and domain experts will struggle to conceive of AI 
applications without access to key data. Inaccessible data may further impede deployment of AI, 
even if it has been developed using alternative data sources. For example, power-network 
optimization software may need regular access to real-time data from a specific grid to make an 
impact on that grid’s carbon emissions.  

• Data standardization. Climate applications of AI, particularly those that require collaborative 
efforts by stakeholders, can be severely impeded by lack of data standardization. Standardization 
is especially important when data are gathered in a distributed fashion. The parties who gather 
and store data can remove significant barriers to the use of their data by adhering to standard 
practices in their individual efforts.  

Data-related barriers can be overcome with a range of strategies. ClimateChangeAI has released a Data 
Set Wishlist—“a list of datasets whose availability could accelerate progress or remove bottlenecks” in 
using AI to fight climate change.3 Such guidance can help spur development and release of datasets 
with high potential for impact. In addition, some businesses may find it helpful to release datasets while 
protecting personally identifiable information. A leading example is Netflix, which released anonymized 
user data and offered a prize for the development of the best recommender system using those data. 
The “Netflix Prize” accelerated the development of machine learning algorithms important to the 
company’s business model and beneficial to the entire media sector.4 
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B. People  
The success of AI depends on the people who develop, use and evaluate it. Three primary groups of 
people are involved: 

• AI developers. Developing AI requires a mixture of specialized skills: a strong fluency in statistics 
and information theory, built upon a foundation of computer science and software engineering. 
Many AI developers have graduate-level degrees in computer science, statistics, engineering and 
applied sciences, applied mathematics, and operations research. Like any other highly technical 
field, the reliance on such specialist skill-sets poses a barrier to scaling the development and 
deployment of AI, as the difficulty of the topic and the time required for its study produces a small 
group of people every year with these credentials. Moreover, AI developers are under significant 
market demand from non-climate-focused institutions, such as technology, finance and media 
companies, leading to extraordinary competition to attract and retain such individuals.5 

• Climate application experts. AI developers cannot address climate change mitigation alone. 
Expertise in many domains is needed. For AI to have an impact on climate change mitigation, AI 
developers must work closely with experts in fields such as atmospheric chemistry, materials 
science, electrical engineering, finance and political science.6 A lack of collaboration between AI 
developers and these experts poses a barrier for successfully developing and deploying AI. Such 
collaborations are catalyzed when groups of skilled workers develop an elementary understanding 
of each others’ fields. These collaborations are stymied when these groups lack experience 
working together or organizational structures that facilitate common efforts.  

• AI users. AI users can be anyone who makes decisions based on the output of AI systems. This can 
include chemists exploring novel materials, economists evaluating policy impacts, pilots making 
decision on flight paths and many others.7 The training needed to interact effectively with AI 
systems will vary from application to application. In general, the more familiarity AI users have 
with basic AI principles, the more likely they are to be able to use AI tools effectively for climate 
change mitigation. 

C. Computing power 
The ability to simulate and run computations is a fundamental building block for AI. Obstacles to 
computation include the following: 

• Computation hardware access. As the amount of data continues to grow across all application 
areas, so does the demand on AI computation.8 This includes access to hardware, either physically 
or through an online computation platform. With access to computation hardware comes costs 
associated with executing simulations; for physical hardware, this includes energy costs and the 
need to maintain computational infrastructure. With online computational platforms, such as 
cloud computing vendors, these costs are typically charged by the vendors based on the amount 
of time taken for computation and the quantity of data processed during that time.   
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• Infrastructure maintenance and upkeep. Institutions that decide to procure and operate 
computational infrastructure must also plan for its maintenance and upkeep. Computational 
infrastructure comprises many electronic components, ranging from servers to networking and 
temperature-control equipment. All components are subject to gradual degradation, which 
requires redundancy in their design and a well-executed maintenance workflow. Upkeep of 
individual components may include using chips with lower energy requirements and increasing 
the capabilities of computation infrastructure as demand for AI increases.  

D. Cost  
Cost is a fundamental barrier that permeates and compounds the barriers discussed above: 

• Financing data for AI. Insufficient financial resources can pose a significant obstacle to data 
availability. Collecting, standardizing and digitizing the data that are needed to power a broad 
range of AI applications for climate use-cases requires funds to buy and operate measurement 
equipment; pay salaries of technicians and data analysts; and pay for data processing, transfer 
and storage.  

• Financing people for AI. With AI-developer talent in strong demand, institutions seeking to draw 
such skilled workers to climate applications require commensurate funding to compete in the 
recruitment market. Climate-application experts are also in demand; lack of sufficient funding can 
impede the ability to bring both sets of people together. 

• Financing computation for AI. Whether institutions choose to procure their own infrastructure or 
outsource their computation to third-party vendors, cost is a primary obstacle to gaining access to 
computation.9 Without sufficient funding, lack of access to computation can bring AI development 
and deployment to a standstill. 

• Financing access to AI. In many climate applications, end-users of AI will likely need to procure AI 
systems and software from vendors. Institutions may decide to build these AI systems “in house,” 
financing the people and computation as above. Or they may choose to buy the AI systems from a 
vendor, in which case lack of funding can prohibit adoption of AI into these climate applications. 

E. Institutions  
AI is poised to transform the work of many organizations that have a role in climate change mitigation, 
including government agencies, private companies and non-governmental organizations (NGOs). A lack 
of leadership attention and thoughtful internal policies in these organizations could be a barrier to 
realizing AI’s potential to help reduce emissions. Potential barriers include the following: 

• Lack of institutional focus. To integrate AI into operations, many organizations will require senior-
management commitment and an organizational structure that ensures attention to AI (such as 
an AI department).  

• Internal policies around AI. Good data practices, adopting AI-based workflows and committing to 
requisite investments, both human and technical, are all essential. 

• Lack of standard-setting. Effective scaling of AI requires data standardization, but the institutions 
with responsibility for setting these standards may be unclear. 
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Chapter 10:  

RISKS  

David Sandalow, Julio Friedmann and Alp Kucukelbir 

Risks from using artificial intelligence (AI) can include bias, invasion of privacy, security, safety and 
increased greenhouse gas emissions.  

A. Bias  
Bias in AI refers to discrimination that can arise when algorithms make decisions that perpetuate 
prejudices, reflect stereotypes or amplify social inequalities. The causes of bias include skewed 
training data and flawed algorithm design. Prominent examples include (1) an AI-enabled hiring tool 
that favored male over female applicants because it was trained on historic data in which men were 
favored in the hiring process and (2) a healthcare algorithm that prioritized healthier white patients 
over sicker black patients because the algorithm used health care spending as a proxy for health care 
needs.1, 2  

When using AI in the context of climate mitigation, risks related to bias include: 

Unrepresentative data: Data used to train AI models can be biased due to the very different levels of 
data availability in different countries. For example, data on vehicle traffic patterns in Organization 
for Economic Cooperation and Development (OECD) countries is relatively rich because of the ability 
to collect measurements from radio frequency identification (RFID), connected vehicles and in situ 
traffic sensors. However, these data may be significantly different from measurements that would be 
collected in non-OECD countries if more sensor systems were available in those countries. As a 
result, AI models for improving traffic flow trained on the most accessible data might be badly 
adapted or entirely unusable in many countries.3, 4  

Misaligned Objectives: AI models are designed to optimize specific objectives. If these objectives are 
not carefully aligned with broad, inclusive climate goals, the models might inadvertently favor certain 
groups or regions over others. 

• Undermining personal autonomy. AI may increasingly be used to provide climate mitigation 
“nudges,” subtly encouraging people to choose options resulting in lower emissions. An 
example of this is Google Maps’ decision to bias route recommendations toward those with 
lower projected greenhouse gas emissions, even at the expense of slightly longer travel times.5 
These biases in recommendations can be quite powerful at influencing behavior, especially 
when informed by AI algorithms. However, there is no clear line between “minor” nudges and 
more intrusive provision of information that excessively manipulates individual decision-
making. Without clearer guidelines, AI-enabled “green nudges” may exceed reasonable 
safeguards and undermine personal autonomy in decision-making.6 

• Reinforcing environmental injustice in communities. AI will increasingly be used to determine 
the optimal locations for siting green infrastructure, such as electric transmission lines and low-
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carbon fuel production facilities. However, the process of optimization includes many different 
goals, including reducing overall costs and minimizing additional (marginal) environmental 
impacts to air and water quality. Based on those criteria, an AI optimal-siting algorithm may 
conclude that low-income communities with low land values that are already burdened by 
extensive air and water pollution are the “optimal” sites for further industrial development. 
Without appropriate safeguards, this would further reinforce historical environmental 
injustices in those communities. AI-enabled algorithms used to identify sites for beneficial 
green infrastructure may suffer from similar issues. For example, when siting electric vehicle 
(EV) charging stations, an AI algorithm that prioritizes high rates of EV ownership in siting 
decisions may neglect low-income communities, making EV ownership in those communities 
more difficult. 

Economic Bias: AI solutions could be developed with economic motivations that prioritize wealthier 
nations or communities. As a result, mitigation strategies might overlook developing countries, which 
might be more vulnerable to climate change but less represented in global data sets, even when 
viable, cost-effective strategies are available. 

Cultural Bias: Climate-related AI models might inadvertently prioritize or deprioritize certain 
mitigation strategies based on the cultural biases of the researchers or developers. This could 
overlook indigenous knowledge or local practices. 

Feedback Loops: AI models that use real-time data to adapt can sometimes create feedback loops 
that reinforce existing biases. For example, if renewable energy installations are primarily in 
wealthier areas due to economic factors, an AI system optimizing for energy distribution might 
continue to prioritize these areas, further widening the gap. 

B. Privacy 
Collection and analysis of vast amounts of data are essential for AI to contribute to climate change 
mitigation. Some of these data may be sensitive, proprietary or personal, presenting privacy 
concerns. Privacy risks related to using AI for climate mitigation include: 

Surveillance: With the increasing use of sensors, drones and Internet of Things (IoT) devices to 
monitor environmental change and human behaviors related to carbon emissions, some data could 
be used for unauthorized surveillance of individuals or businesses. 

Personal identification: When data from multiple sources are aggregated, individuals who were 
previously anonymous in isolated data sets could become identifiable. For example, combining 
smart-meter data with property records or other public data sets can reveal detailed information 
about an individual's habits. 

Data Sharing: Data collected for climate-mitigation purposes, such as energy-consumption patterns, 
might be shared with third parties like advertisers, insurers or utilities, potentially without the explicit 
consent of the individuals involved. The data could be shared by the host of the data or as the result 
of a data breach or cyberattack by a third party.  
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These risks may have repercussions beyond the realm of commerce or privacy. For example, 
criminals could use these data to gain access to personal information. AI-based systems that leverage 
distributed data collection could be appropriated for political use. For example, AI models that 
optimize crop growth in developing countries (increasing food production per unit of total 
greenhouse gas emissions) may inadvertently provide previously unavailable network and data 
collection infrastructure for government surveillance systems.7 While private developers may initially 
build data-collection and analysis technology for purely climate mitigation systems, they may be 
unable to prevent a repurposing of these system. 

Ultimately, any kind of data that are granular enough to contain information at the individual level 
are of concern. Examples may include information about individuals (gathered through their usage of 
a device connected to the internet), including personal and potentially private aspects, such as their 
medical history, age or gender. 

Not all data about people are of concern. Examples include data aggregated to the point where 
individuals cannot be identified or data about individuals where they cannot be identified, such as 
satellite images of people in cars. Some operational and mathematical tools can fully anonymize 
data, allowing for safe and insightful derivative data and results.  

Practical applications are possible without overstepping important privacy bounds. Workers using 
and developing AI tools can start with design around specific use cases (e.g., traffic or power use). 
This can start first with awareness-building and operational guides, as well as training and education 
regarding privacy concerns. In addition, straightforward technical approaches, such as federating 
data, restricted access, differential privacy and encryption, can assist workers in both maintaining 
privacy and delivering high-impact mitigation outcomes. 

C. Security 
All software programs are subject to attacks by hackers, creating security risks. AI systems expand 
the “attack surface” for hackers beyond that found in conventional software programs, increasing 
such risks. For example, AI systems ingest large amounts of data from potentially many different 
sources. Attacking these data sources can steer an AI system’s behavior in unpredictable ways. The 
consequences can be especially serious when AI is used in real-time workflows.  

Using AI for planning/static use cases poses similar security risks to regular software infrastructure. AI 
systems store and process data, thereby exposing such data to parties without authorized access, 
both within and outside of organizations. AI systems produce results that are themselves data 
subject to similar risks. Both can be managed with data security protocols that are well established in 
organizations that produce and operate with data. 

Using AI in real-time/live workflows carries additional security risks beyond regular software systems. 
AI systems that are integrated into real-time workflows may be subject to stringent reliability 
requirements. Since AI systems are so complex, it becomes difficult to fully audit them for potential 
issues when adopted into live workflows. Risks specific to AI include but are not limited to: 
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• Cases where data are accepted as an input during operations. For example, researchers have 
identified security risks in large language models (LLMs) by adding extra text in clever ways to 
drive AI systems to act unpredictably.8 

• Cases where the environment in which an AI system operates is modified. For example, 
researchers were able to spoof street signs and confuse a self-driving AI autopilot system using 
subtle stickers. By printing modified copies of signs or adding small black and white strips, they 
could reliably cause a stop sign to be misread as a speed limit sign.9 

• Cases where systems must be regularly and carefully updated with new data to maintain their 
effectiveness, giving attackers the opportunity to introduce data that may steer the AI system 
astray.10 

The rapid development of new AI technologies also means security risks may emerge faster than 
organizations can address them.11 Many of the AI applications in this report pertain to critical 
infrastructure sectors12 which are accompanied by additional security risk-mitigation requirements. 

Overall, while promising significant climate mitigation opportunities, AI systems share similarities to 
regular software in how vulnerabilities can inadvertently be introduced if not properly managed from 
a security perspective. 

The key is for both governments and organizations to take a proactive approach focused on 
transparency, oversight, education and governance to manage the faster-moving security challenges 
associated with adopting AI. 

D. Safety 
AI systems can create safety risks when they fail to operate as intended or have unintended 
consequences. (This is different than the security risks discussed above, in which someone 
intentionally uses an AI system to cause harm.)  

The Cybersecurity and Infrastructure Security Agency of the United States maintains a list of sectors 
considered “so vital […] that their incapacitation or destruction would have a debilitating effect on 
security, national economic security, national public health or safety, or any combination thereof.”12 
More than half of these sectors, such as chemicals, manufacturing and energy, are covered in this 
roadmap. Some of these sectors, such as manufacturing, have dangerous workplaces. Others, such 
as food and agriculture, carry public health risks.  

Almost every application of AI described in this roadmap could create safety risks. For example:  

• AI systems in real-time grid-optimization operations could lead to unsafe physical conditions 
and/or other threats to human safety in the field. 

• Manufacturing facilities under AI-driven recommendations could lead to unstable operating 
conditions and increase the risk of injury in physical facilities. 

• Agricultural AI applications with inadequate data or poorly developed models could lead to 
over-utilization of arable land and/or adverse public-health consequences. 

• Transportation systems optimized by AI could increase the risk of accidents by proposing 
unsafe routes and traffic patterns. 
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In each of these examples, the safety risk can be minimized with several strategies:  

• First, AI systems should be fully tested and validated in static (non-real-time) settings, where 
the above-mentioned risks are mitigated because no live action is taken based on the AI 
system’s outputs. This validation phase must be carefully conducted to properly represent 
“real-world” conditions of what the AI system would encounter once deployed live.  

• Second, AI systems in dangerous settings should be deployed under the same safeguards that 
apply to regular software. The outputs of AI systems should pass through deterministic and 
vetted workflows that ensure these outputs cannot lead to dangerous physical conditions.  

• Finally, AI systems should be deployed in phased rollouts across large systems. This enables 
enough resources to be dedicated to the required monitoring and validation of real-time AI 
systems, before scaling across entire systems, such as large power grids. Existing guidelines for 
adopting new workflows apply to AI systems and can help mitigate the risk to public health and 
safety. 

E. Greenhouse gas emissions 
At present, greenhouse gas emissions from AI are modest—significantly less than 1% of the global 
total. (See discussion below.) Better data collection and assessment methodologies are needed to 
provide a more precise estimate with high confidence. 

The amount of future greenhouse gas emissions related to AI is highly uncertain. In some scenarios, 
greenhouse gas emissions from AI decline in the years ahead. In other scenarios, such emissions 
increase significantly.    

This section discusses current and future greenhouse gas emissions from AI, explaining the 
uncertainties. 

(i) Background 
AI systems require energy. Manufacturing integrated circuitry for AI systems requires energy for 
mineral extraction, construction of complex machinery and sophisticated operations. Training and 
tuning of AI models requires energy for electricity. AI inference (in which users query models for 
results) also requires energy for electricity. Infrastructure supporting these tasks, including data 
storage, data transfer and cooling of hardware, adds to AI’s energy footprint. 

This energy use does not necessarily result in significant greenhouse gas emissions. When the 
electricity at a data center comes from solar, wind or nuclear power, for example, the direct 
greenhouse gas emissions from data-center operations are modest. Current data centers are major 
consumers of renewable power. Indeed in 2021, Amazon, Microsoft, Meta and Google—which 
operate a significant percentage of the world’s data centers—led the world in renewable-power 
purchase agreements.13 However other parts of the AI value chain—including mineral extraction for 
equipment manufacturing—rely much less heavily on low-carbon power.  

The term “emissions from AI” is potentially quite broad. The term could include emissions from: 

1) manufacturing hardware for AI;  
2) training and tuning of AI models;  
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3) AI inference (i.e., use of AI models);  
4) applications of AI, some of which may increase emissions (e.g., those that make burning fossil 

fuels cheaper or easier) and some of which may reduce emissions (e.g., the AI applications 
discussed in this roadmap); and  

5) broad societal changes caused by AI, such as in labor markets or political dialogue.14 

Estimating current and future greenhouse gas emissions from each of these processes is challenging 
for several reasons:  

• Data collection and assessment methodologies are generally inadequate for providing precise 
and confident estimates.14, 15 

• In modern cloud-based computing, computer hardware and its associated infrastructure 
(including HVAC) are frequently shared among many software programs. While some of these 
software programs use AI-based algorithms, many do not. As a result, it is difficult to correctly 
allocate overall emissions from computing infrastructure to the subcategory of AI applications. 
(In some cases, specialized computing chips are used for purely AI-based software, but the use 
of chips for both AI-based and non-AI-based software is more common.) This leads to 
significant uncertainty in emissions estimates, although the overall emissions from the 
information, communications and technology (ICT) sector serves as an upper bound on AI’s 
emissions. 

• Estimating greenhouse gas emissions from items 4 and 5 above is especially challenging due to 
the considerable unknowns with respect to how AI will be used in the years ahead. 

In this section, we focus on items 1-3 above. Using the terminology of greenhouse gas accounting, 
these are Scope 1, Scope 2 and upstream Scope 3 emissions related to computing operations for AI. 

(ii) Current greenhouse gas emissions from AI 
There are no precise, widely accepted estimates of current lifecycle greenhouse gas emissions from 
computing operations for AI. However, the existing literature suggests that such emissions are 
significantly less than 1% of total global greenhouse gas emissions. 

• According to the International Energy Agency (IEA), in 2020, data centers and data transmission 
networks were responsible for 0.6% of global greenhouse gas emissions (330 Mt CO2e). This 
figure includes embodied emissions (i.e., emissions from the manufacturing of equipment used 
in data centers and data transmission networks).13  

– No figure is available for the percentage of data-center and data-transmission-network 
activity that relates to AI. However, that figure is less than 100% and likely much less than 
100%. 

– On the other hand, AI activity has grown significantly since 2020—including most notably 
with the development and public release of ChatGPT, which has roughly 100 million 
active users. 16, 17 
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• In a Nature Climate Change paper published in 2022, Lynn Kaack et al. estimate that cloud and 
hyperscale data centers are responsible for 0.1–0.2% of global greenhouse gas emissions and 
that roughly 25% of their workloads were related to machine learning (ML). 14 

– This estimate is based on data that are now several years old. AI activity has increased 
significantly in the past several years. 

• In a 2022 study, Sasha Luccioni et al. found that greenhouse gas emissions from training 
several current LLMs, including GPT-3 and BLOOM, ranged from roughly 30 to 550 tonnes 
CO2e.18 In a 2021 paper, David Patterson et al. provided similar estimates (noting that the 
average commercial plane emits roughly 180 tonnes CO2e flying from San Francisco to New 
York).19 550 tonnes CO2e is 0.000001% (1x10-8) of global greenhouse gas emissions. (Global 
greenhouse gas emissions were 55 ± 5.2 GtCO2e in 2021.) 20 

• In 2021, Scope 1 and Scope 2 emissions from semiconductor manufacturing were roughly 76.5 
Mt CO2e globally (0.15% of global emissions).21 The share of this manufacturing that related to 
AI is unknown, but in light of the pervasive use of semiconductors in countless products, it is 
likely not significant. 

The literature on greenhouse gas emissions from AI is growing.22-24 Unfortunately, no clear, uniform 
standards exist for measuring greenhouse gas emissions from AI systems. Improved measurement 
standardization and more research are needed to provide precise and confident estimates of current 
emissions.  

(iii) Future greenhouse gas emissions from AI 
Future greenhouse gas emission from computing operations for AI depend on a number of factors, 
including: 

1) the processes used to manufacture AI computing equipment,  
2) the energy efficiency of AI computing equipment,  
3) optimization techniques used to reduce the size of AI models and make training them more 

efficient,  
4) the use of zero carbon electricity in AI operations, and  
5) demand for AI applications.  

Projecting most of these five variables over the medium- to long-term is very challenging. Each is 
discussed below. 

1) Manufacturing AI equipment. The demand for hardware related to AI is likely to grow 
significantly in the years ahead. That could lead to an increase in greenhouse gas emissions 
from manufacturing AI hardware, although energy efficiency improvements have the 
potential to slow that increase and renewable-power deployment has the potential to 
reverse the increase. With sufficient deployment of low-carbon power, greenhouse gas 
emissions from manufacturing AI hardware could fall even as demand grows.25 

2) Energy efficiency of computation. Between 2015 and 2021, data center workload increased 
by 260% while data center energy use increased by only 10%.26 If such improvements 
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continue, they would help to significantly limit AI’s greenhouse gas footprint. Studies of 
power usage effectiveness (PUE) at data centers suggest significant continued energy-
efficiency improvements are possible.27 In 2020, average PUE (defined as the ratio of total 
energy use at a data center divided by the energy used by its computing equipment) across 
the industry was 1.58, while newer data centers demonstrated PUEs of 1.1. More efficient 
and higher-performing computational equipment such as tensor processing units (TPUs) 
offer the promise of continued energy-efficiency improvements as well.28-30 More radical 
design concepts, such as analog-AI chips, may also result in major improvements in energy 
efficiency.31 

3) AI model improvement. Historically, advances in ML model architectures (such as sparse 
models versus dense models) have reduced computation needs by 5–10 times while 
improving quality. Significant work is underway to further improve model architectures, such 
as by reducing the size and improving efficiency with techniques such as pruning, low-rank 
factorization, quantization and knowledge distillation.28, 32 Whether these improvements 
outpace the growth in demand for AI is uncertain. 

4) Use of low-carbon electricity. Electricity for data centers is the single largest source of energy 
consumption related to AI. Many operators of large data centers are committed to the use of 
low-carbon electricity and have committed to achieving net-zero emissions.33 However 
achieving those commitments could be difficult due to a number of factors, including land-
use constraints, inadequate transmission infrastructure, permitting delays and the cost of 
energy storage. The ability of data-center operators to use 24/7 low-carbon electricity in the 
years ahead will vary from jurisdiction to jurisdiction and will have a significant impact on 
greenhouse gas emissions from AI. 

5) Demand for AI. Between 2017 and 2022, companies’ demand for AI applications more than 
doubled.25 Total AI-related private investment grew 18 times from 2013 to 2021.34 Many 
forecasters predict that AI will grow dramatically in the years ahead—at compound annual 
growth rates in the range of 20–40% or more.35-37 

Each of the factors above will have a material impact on greenhouse gas emissions from 
computing operations for AI in the years ahead. The range of uncertainty with respect to 
each of them is significant. If demand for AI increases at an exponential rate in the years 
ahead but energy efficiency, model improvements and/or renewable power deployment 
proceed slowly, greenhouse gas emissions could be quite large. If AI grows slowly and energy 
efficiency, model improvements and/or renewable-power deployment proceed rapidly, 
greenhouse gas emissions from computing operations from AI could be modest. Many 
intermediate scenarios are possible as well. 

(iv) Conclusion 
Widening the aperture to include the greenhouse gas impacts of AI applications and broad societal 
impacts of AI, the uncertainties become even greater. 

There is significant potential for the overall greenhouse gas benefits of AI to exceed its costs. This 
could happen, for example, if strategies for minimizing emissions from AI succeed and some of the 
emissions-reducing applications of AI discussed in this roadmap deliver significant results. However, 
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the opposite is possible as well. AI could increase greenhouse gas emissions if strategies for reducing 
emissions from AI fail and applications of AI that increase emissions overwhelm beneficial 
applications, such as those discussed in this roadmap. 

Rigorous analysis of the broad sweep of AI’s impact on greenhouse gas emissions will require further 
research, as well as better data and assessment methodologies than exist today.15 
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Chapter 11:  

POLICY 
David Sandalow  

Government policies with respect to 
artificial intelligence (AI) are evolving 
rapidly. Policymakers around the world are 
considering a range of topics with respect to 
AI including security, bias, privacy, job 
displacement and international 
competitiveness.  

AI policy began to receive considerable 
attention during the latter part of the 2010s, 
due in part to the growing capabilities of AI 
models and emergence of applications such 
as facial recognition and autonomous 
vehicles. Important developments included:  

• a White House report on Preparing for the Future of Artificial Intelligence (2016),1 

• China State Council’s Artificial Intelligence Development Plan (2017),2-4 

• the European Union’s General Data Protection Regulation (2018),5 and 
• the OECD AI Principles, issued by the Organization for Economic Cooperation and 

Development (OECD) (2019).6  

The release of ChatGPT in fall 2022 focused extraordinary public attention on AI, leading to 
unprecedented interest from policymakers. The text box at the end of this chapter summarizes 
recent AI policy developments in key jurisdictions around the world.  

This chapter examines policies that specifically address the use of AI for climate mitigation. Few 
such policies have been adopted to date. Some general AI policies have implications for climate 
change, and some climate change policies will be implemented using AI, but policies specifically 
designed to promote or manage the use of AI in climate mitigation are only beginning to emerge. 
Against that mostly blank slate, this chapter explores two questions: 

1.  What policy tools could governments use to promote the use of AI for climate mitigation?  

2.  What policies could governments use to manage risks related to the use of AI for climate 
mitigation? 

These questions are discussed below.  
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A. Promoting use of AI for climate mitigation 
Barriers to the use of AI for climate mitigation include those related data, people, computing 
power, cost and institutions. (See Chapter 9.) Government policies could help overcome barriers 
in all these areas. 

(i) Data 
Data issues can be a significant barrier 
to the use of AI for climate mitigation. 
Such issues can include the absence of 
data, the failure to digitize data, the 
lack of standardized or harmonized 
data, and shortfalls in funding for data 
collection and management. 

Governments can play an important 
role in addressing these challenges. 
Possible measures include:  

• collecting, curating and hosting 
climate-related data; 

• funding the collection and hosting of climate-related data by others; 
• convening task forces or similar groups to encourage the collection, standardization and 

harmonization of climate-related data; 

• adopting regulations that encourage or require the collection, standardization and 
harmonization of climate-related data; and 

• addressing the global digital divide, which limits the creation of relevant data relevant to 
billions of people worldwide. 

Governments already collect and host significant amounts of data related to climate change. The 
European Space Agency, US National Aeronautics and Space Administration (NASA), Japan 
Meteorological Agency and China Meteorological Administration, for example, all collect and host 
large amounts of historical and current weather data. Multilateral organizations, including the 
World Meteorological Organization, do the same. Several government programs, including the 
European Space Agency’s Climate Change Initiative and NASA’s Climate Data Service focus 
specifically on ways that weather data can contribute to understanding of climate change.  

Government agencies collect other types of data related to climate mitigation as well. NASA 
collects data on forest loss.7 The Japan Meteorological Agency collects data on sea-level rise.8 

Hundreds of cities around the world collect traffic data.9 Most national governments—as well as 
the World Bank, International Monetary Fund (IMF) and OECD—collect economic data.10 

Governments often support the collection of climate-related data sets with grants, procurement 
or other spending. Many universities, for example, rely on government grants for data collection 
and analysis with respect to climate change. The US, EU, Japanese and Chinese governments, 
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among others, provide extensive grant funding for climate change and clean-energy research, 
which often involves data collection.11-13 

Governments can also play a central role in promoting standardization and harmonization of data 
for climate mitigation.  

First, governments can establish policies that emphasize the importance of standardization and 
harmonization of climate data. These policies could include: 

• data management guidelines, such as the “FAIR Guiding Principles” (Findability, Accessibility, 
Interoperability and Reusability) proposed by a diverse group of stakeholders in 2016;14  

• data standardization and harmonization requirements in connection with government-
funded research and development (R&D); 

• measures to ensure transparency, including access to metadata and core data; and 
• funding for data standardization organizations and activities. 

Examples of such data standardization policies today include:  

• the German Standardization Roadmap, which establishes “data infrastructure and data 
quality standards for the development and validation of AI systems,” specifically noting that 
“[data] standardization contributes to Germany's transformation into a climate-neutral 
industrialized country”15; and  

• the European Space Agency’s Climate Change Initiative Data Standards, which set forth 
requirements “to ensure consistency, harmonization and ease of use” of varied climate data 
sets.16 

Second, governments can participate in standardization bodies and initiatives focused on data for 
climate mitigation. By joining international organizations—such as the International Standards 
Organization—and supporting industry-specific groups, governments contribute to development 
of data standards, protocols and best practices. Governments can also provide resources, 
expertise and endorsements to encourage the adoption of these standards by industries and 
organizations. One example is the European Telecommunications Standards Institute (ETSI), a 
European standard-setting organization supported in part by the European Union that sets 
Internet of Things (IoT) standards, including those for “achieving the green and digital 
transformation.”17 

Third, governments can foster collaboration and knowledge-sharing among stakeholders, thereby 
promoting standardization and harmonization of climate-related data. The UK Energy Data Task 
Force is a good example. Established in 2019 as a collaboration between government, industry 
and academia, the Task Force develops standards and best practices with respect to data quality, 
interoperability and data sharing protocols in the energy sector.18 Similarly, Global Open Data for 
Agriculture and Nutrition (GODAN) is an international initiative that promotes the use of open 
data in the agriculture and nutrition sectors. GODAN brings together governments, organizations 
and individuals to advocate for data standardization, sharing and interoperability.19 

Finally, governments can take steps to address the global digital divide. Today, more than 2.5 
billion people globally are not connected to the Internet, and roughly half the world’s population 
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lacks access to high-speed broadband.20 That significantly limits the creation of data on a range of 
topics relevant to climate mitigation, including energy usage, travel patterns and more. 
Connecting people to high-speed Internet has far-reaching benefits for economic development, of 
course, and should be pursued for many reasons far more immediate than creating useful data for 
AI-climate applications. Steps that governments can take include investing in broadband 
infrastructure in remote and underserved areas; establishing public wifi hotspots in community 
centers, libraries and schools; and launching digital literacy training programs to teach basic digital 
skills.21 

(ii) People 
One of the principal barriers to the use of AI for climate mitigation is a lack of trained personnel. 
Not only are trained data scientists and engineers in short supply, but many professionals working 
on climate issues lack basic familiarity with AI issues.  

Governments could help overcome these barriers in several ways. 

First, governments could launch skills-development programs for professionals working on AI and 
climate issues. Some programs would target professionals with climate expertise, teaching them 
about AI; other programs would target professionals with AI expertise, teaching them about 
climate. The programs could be workshops, short lecture series or full courses. Government 
agencies could run such programs or fund others to do so. 

Second, governments could launch AI-climate fellowship programs, modeled after Marshall 
Scholarships, Schwarzman Scholarships and similar programs. The programs would identify 
promising university graduates (perhaps focusing on those from developing countries) and fund 
residential fellowships to study topics related to AI and climate change. Governments could 
explore partnerships with leading foundations for these programs.22-24 

Third, governments could pay for the education of university students learning skills related to the 
use of AI for climate mitigation. In some countries, paying the tuition and living expenses of 
university students developing such skills could help significantly to increase enrollment in 
relevant courses.  

Fourth, governments could integrate AI and climate change–related topics into educational 
curricula at all levels. AI skills rest on a foundation of science, technology, engineering and math 
(STEM) education, with a curriculum that includes quantitative reasoning, logic, computer 
programming and related topics. Governments can commit to strengthening STEM education as a 
platform for developing a new generation prepared for AI-specific education/training, with 
particular applications related to climate change.  
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Fifth, government agencies working on 
climate mitigation could systematically 
review the capabilities of their own 
staff with respect to AI and launch 
programs to ensure their staff remain 
up-to-date with respect to AI 
developments. This could be especially 
beneficial for grant managers, to 
ensure government funds are 
disbursed with an up-to-date 
understanding of AI’s potential and 
attention to AI-related data 
management practices. 

Sixth, governments could commit extra funds to recruit and retain skilled AI professionals. AI 
specialists often command high salaries in the private sector, making it challenging for 
government agencies to hire them. Providing government human resources (HR) departments 
with the authority and resources to compete (at least partially) with the private sector for the best 
AI professionals could deliver significant benefits.  

Finally, as a core feature of education and training programs for AI and climate change, 
governments could pay attention to the global digital divide. As noted, billions of people globally 
currently lack Internet connectivity. Education and training programs focusing on basic digital 
skills in many regions will contribute enormously to a workforce able to fully utilize AI for climate 
change mitigation over the long-term.  

(iii) Computing Power 
AI projects require computing power. The lack of adequate computing power can be a barrier 
limiting the ability to pursue valuable AI projects related to climate change. Governments can take 
several steps to address this challenge.  

Governments could help increase the availability of computing power for climate change-related 
AI projects by (1) investing in computing infrastructure and (2) making computing infrastructure 
available for projects that use AI for climate change mitigation.  

Governments already play an important role in this regard. Within the US Department of Energy 
(US DOE), for example, some of the world’s most powerful supercomputers support a global 
network of partners as part of the Earth System Grid Federation (above). In connection with this 
project, Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL) 
and other US DOE National Labs provide computational services for climate change—including 
baselining, simulations and projections—in part using AI tools.25-27 

As opportunities to use AI for climate mitigation grow in the years ahead, the role of governments 
in helping provide computing power for such opportunities will be important. Many climate 
change–related AI projects will have large potential public benefits but little, if any, near-term 
commercial return. (Examples include projects that analyze satellite data to identify deforestation 
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and traffic data to help minimize congestion.) Investing in such projects is a classic governmental 
function.  

Government investment could take several forms. Governments could invest in their own 
computing infrastructure, provide grants for others to develop such infrastructure, and/or provide 
tax incentives to encourage development. The approaches that work best will vary from country 
to country.  

One powerful tool could be to (i) solicit proposals for projects that use AI for climate change 
mitigation and then (ii) make computing power available without cost for the proposals that offer 
the greatest potential benefits. Microsoft AI for Earth and other private companies already do 
this;28 governments could play an important role as demand for computing time increases in the 
years ahead. Government high-performance computing (HPC) facilities could expand their review 
process and reviewer pool to include more AI expertise and emphasize allocating HPC time for AI-
enabled research with direct impacts on climate mitigation.29 

(iv) Cost 
Cost is a cross-cutting barrier, relevant to each of the three barriers discussed above (data, people 
and computing power). Each of these three barriers could be mostly addressed, at least in the 
medium-term, with greater funding.  

As noted above, many climate change–related AI projects will have little if any near-term 
commercial return, making government funding essential. Many advances in the use of AI for 
climate mitigation will depend on government funding in the years ahead.  

A key question will be how such government funding for AI will be allocated. Some governments 
may focus funding on new and innovative AI methods. Other governments may prioritize 
greenhouse gas (GHG) reductions, which will often be achievable with existing AI methods. The 
allocation of funding between these two types of projects—those investigating new AI methods 
and targeting maximum emissions reduction—could have a significant impact.30 

Governments also have an important role in making sure that electric utilities that use AI tools to 
reduce emissions receive compensation for such projects. Electric utilities that are paid a 
regulated return based on their capital spending may lack the incentive to invest in AI tools that 
reduce emissions and costs. Unless 
regulators approve rules that provide 
compensation for the value created by AI, 
electric utilities may not pursue emissions-
reducing projects such as those for demand 
response or vehicle-grid integration.31 

(v) Institutions 
A final barrier to the deployment of AI for 
climate mitigation is institutional.  

Some recent history provides useful 
background. The modern computing era 
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began in the 1960s, as mainframe computers became increasingly central to many business 
functions. But the term “Chief Information Officer” wasn’t coined until 1981. Until the 1980s, 
few large organizations had executives solely responsible for information and communications 
technologies in their top leadership teams.32 

In a similar manner, despite significant recent advances in AI, many institutions are only 
beginning to incorporate AI into their organization and mission. A range of steps to do so are 
possible. For governmental organizations with responsibility for climate change mitigation, 
including environment and energy ministries, such steps could include:   

• creating an Artificial Intelligence Office, with responsibility for assessing opportunities, 
barriers and risks with respect to AI in all aspects of the ministry’s mission;33 

• hiring a Special Advisor to the Minister or Cabinet Secretary, with responsibility for 
advising the Minister on all matters related to AI; 

• creating a unit to improve AI skills throughout the organization; and/or 
• launching a strategic planning process to consider ways that topics related to AI can best 

be addressed within the ministry on an ongoing basis. 

Governments can also create or help create public-private partnerships or other stakeholder 
groups, bringing together diverse groups to discuss and implement opportunities for using AI 
for climate mitigation. Governments could help fund such public-private partnerships and/or 
provide the convening power to help assemble and sustain such groups. 

Finally, international cooperation could also pay dividends. The Clean Energy Ministerial could 
launch an initiative on the use of AI in promoting clean energy. The World Meteorological 
Organization could launch a program to reconcile potentially contradictory GHG emissions data 
using AI tools. (See Chapter 3.) Other international fora could launch work programs in this 
area as well. 

B. Managing risks 
Risks related to the use of AI for climate mitigation include those related to bias, privacy and 
increased emissions. Government policies can play an important role in helping manage each 
of these risks.  

(i) Bias 
Unrepresentative data, poorly-designed algorithms and other factors create risks of bias in 
many AI applications. These biases can affect siting recommendations, suggesting (for example) 
that new polluting infrastructure be located in low-income communities and new electric 
vehicle (EV) charging infrastructure be located in high-income communities, in part because 
that’s where such infrastructure is found in existing data sets. AI modes can produce poor or 
inaccurate results when developers fail to realize that data collected from one socioeconomic 
group is not representative of patterns in another socioeconomic group. 

Governments can address these risks with a range of tools.  



ICEF Roadmap 2023: AI for Climate Change Mitigation  

December 2023 Chapter 11: Policy - 109 

• Data collection standards. Governments could set standards data collection for AI models, 
highlighting the importance of diverse and representative data sets. These standards could 
be binding or non-binding 

• Transparency. Similarly, governments could set standards with respect to transparency in 
developing AI models, giving all stakeholders a better opportunity to identify possible biases. 
These standards could be binding or non-binding 

• Third-party audits. Governments could recommend or require that AI developers retain 
third party auditors to assess any bias in their products and establish accreditation 
standards for organizations conducting such audits 

• Legal accountability. Governments could establish legal frameworks that hold entities 
accountable for biased or discriminatory outcomes resulting from AI applications 

• Convening. Governments could convene diverse stakeholders to evaluate AI products, 
bringing people with a wide range of views together and making sure all are heard 

• Education and training. Governments could offer AI developers, data scientists and other 
stakeholders training programs on the importance of bias recognition and mitigation 

• Research and development (R&D). Governments could allocate funding for research into 
reducing bias in AI generally and for climate mitigation 

(ii) Privacy 
As set forth in Chapter 10, privacy risks related to the use of AI for climate mitigation include 
surveillance, personal identification and data sharing. First, the increasing use of sensors, drones 
and IoT devices to monitor environmental change and human behaviors related to carbon 
emissions creates a risk that some data could be used for unauthorized surveillance. Second, 
when data from multiple sources are aggregated (such as smart meter data and property 
records), individuals who were previously anonymous in isolated datasets could become 
identifiable. Third, data on energy consumption patterns or other topics could be shared with 
third parties, either by the host of that data or as the result of a cyberattack. 

Governments can address these risks with policies including: 

• Data protection regulations. Governments could enact laws requiring organizations to 
ensure the privacy and protection of personal data; provide transparency on how data are 
processed; and give individual’s rights to access, correct and delete their data. The European 
Union’s General Data Protection Regulation (GDPR) is the strongest such law passed globally 
to date. 

• Privacy by design for all AI models. Governments could require that privacy considerations 
be expressly integrated in the design of AI models throughout development and during use 
of the models. 

• Cybersecurity standards. Governments could mandate cybersecurity measures for 
organizations that collect, process or store climate-related data. 

• Anonymization. Governments could require use of techniques that render personal data less 
identifiable. 
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• Oversight and governance bodies. Governments could establish independent oversight 
boards or agencies responsible for monitoring and ensuring privacy protections related to AI 
and climate mitigation. 

(iii) Greenhouse gas (GHG) emissions 
As set forth in Chapter 10, AI systems consume energy and, therefore, create a risk of increased 
GHG emissions. A number of policies can help mitigate this risk and lower GHG emissions from AI 
systems.   

• Research & development (R&D). Governments could invest in R&D on energy-efficient AI 
algorithms and hardware. That could include research on methods that require less data or 
computational power for training AI models, such as few-shot learning or transfer learning. 

• Low-carbon data centers. Governments can promote data centers that emit little or no 
carbon dioxide through a range of measures, including (1) tax incentives or subsidies for 
data centers powered with zero-carbon electricity (renewables, nuclear or fossil generation 
with carbon capture); (2) regulations requiring data centers to use a certain percentage of 
zero-carbon power and (3) guidelines and incentives for energy-efficient data centers, 
accelerating the adoption of energy-efficient cooling, energy-management systems and 
other technologies. 

• Energy consumption disclosures. Governments could require AI companies to disclose GHG 
emissions associated with their operations on a full lifecycle basis. 

• Government procurement. Governments can prioritize AI systems with low GHG emissions 
when procuring AI solutions for their own use.  

• Carbon pricing. Governments can implement carbon taxes or cap-and-trade systems to 
incentivize a wide range of companies, including AI and data center operators , to reduce 
their GHG emissions. 
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AI POLICIES IN BRIEF 
as of November 2023 

UNITED STATES 

The Biden administration has devoted considerable attention to AI. Leading announcements 
include: 

• the Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial 
Intelligence, released in October 2023, which requires developers of large AI models to share 
information about their products with the US government, streamlines visa processes for 
noncitizens working on AI and directs federal agencies to issue AI guidelines, among dozens 
of provisions;34 

• the AI Risk Management Framework, released by the National Institute for Standards and 
Technology (NIST) in January 2023 to help “manage risks to individuals, organizations, and 
society associated with artificial intelligence;”35 and 

• the Blueprint for an AI Bill of Rights, released by the White House in October 2022 to guide 
the design and use of AI with five principles—safe and effective systems; algorithmic 
discrimination protection; data privacy; notice and explanation; and human alternatives, 
considerations and fallback.36 

In July 2023, President Biden met at the White House with the CEOs of leading AI companies, 
who pledged “to develop and deploy advanced AI systems to help address society’s greatest 
challenges,” including climate change.37 The National Artificial Intelligence Initiative Office, part 
of the White House Office of Science and Technology Policy, coordinates the federal 
government’s National AI Initiative.38  

Members of the US Congress have been paying attention as well, with high-profile hearings and 
briefings, as well as bills introduced on a number of AI-related topics.39 Legislation to date has 
focused on the use of AI within the federal government. This includes:  

• the Advancing American AI Act of 2022, which defines principles for government use of AI;  
• the AI Training for the Acquisition Workforce Act of 2022, which requires AI training for 

government acquisition employees;  
• the National AI Initiative Act of 2020, which established the National Artificial Intelligence 

Initiative Office and directed NIST to develop the AI Risk Management Framework; and  
• the AI in Government Act of 2020, which created the AI Center of Excellence within the 

General Services Administration (GSA) and directed the Office of Management and Budget 
(OMB) to develop guidance on AI for federal agencies.40 

EUROPEAN UNION 

As of November 2023, the European Parliament, European Commission and Member State 
governments were in negotiations concerning an Artificial Intelligence Act that would 
comprehensively regulate AI in Europe. If enacted, the legislation would apply a risk-based 
approach to AI, with high-risk AI systems subject to the most stringent controls. Drafts of the AI 
Act include provisions prohibiting some activities considered to be especially risky, such as live  
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facial recognition and scraping biometric data from social media platforms. Final action is 
expected in late 2023 or early 2024.41, 42 

In September 2022, the European Commission proposed the AI Liability Directive, which is 
intended to ensure that AI operators can be held liable for damages caused by AI systems. (In the 
absence of such a directive, the lack of transparency and complexity of AI systems could make 
recovery of damages difficult.) The European Parliament and Council of the European Union have 
not yet acted on the European Commission’s proposal. If the AI Liability Directive is adopted, EU 
Member States would then be required to incorporate its terms into national laws.43-47 

Other important EU AI policies include (1) the Coordinated Plan on Artificial Intelligence, updated 
in 2021, which aims to accelerate investments in AI technologies and align AI throughout the 
European Union48 and (2) the General Data Protection Regulation (GDPR) of 2016. AI is not 
explicitly mentioned in the GDPR, but many of its provisions—including those on purpose 
limitation, data minimization, the special treatment of “sensitive data” and limitations on 
automated decisions—are relevant to AI.49, 50 

CHINA 

In July 2023, the Cyberspace Administration of China (CAC) and other entities published the 
Provisional Regulations on Management of Generative Artificial Intelligence Services. The 
Provisional Regulations require that any generative AI technologies used to provide services to 
the public in the China “reflect socialist core values” and prohibit content that “may harm 
national security and hurt the national image.”51 

In June 2023, China’s State Council announced that it will submit a draft AI law to the Standing 
Committee of the National People's Congress by the end of the year.52 This would be China’s first 
national AI legislation. 

In the past several years, the Chinese government has released a number of binding policy 
documents on AI. These include: 

• Provisions on the Administration of Deep Synthesis Internet Information Services, released by 
the CAC, the Ministry of Industry and Information Technology (MIIT) and the Ministry of 
Public Security (MPS) in November 2022. This policy document requires the labeling of 
synthetically generated content and prohibits AI tools from generating “fake news 
information.”53 

• Provisions on the Management of Algorithmic Recommendations in Internet Information 
Services, released by CAC, MIIT, MPS and the State Administration for Market Regulation in 
December 2021. This document includes provisions for content control and worker 
protection and created China’s “algorithm registry,” an online database. Developers are 
required to submit information to the registry on the training and deployment of their 
algorithms.54, 55 
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JAPAN 
In their May 2023 meeting in Hiroshima, Japan, G7 heads of state agreed to launch an initiative 
to strengthen collaboration on the governance of generative AI. The initiative will be known as 
the “Hiroshima AI process.”56 Also in May 2023, the Japanese government held the first meeting 
of its Artificial Intelligence Strategy Council, attended by Prime Minister Fumio Kishida.57 

In April 2023, Japan’s governing Liberal Democratic Party released an AI White Paper with more 
than two dozen recommendations for promoting and managing the development of AI in Japan, 
including: 

• “Accelerate applied research and development by accumulating domestic knowledge on 
foundation models” 

• “Immediately initiate multiple pilot projects with visible results in a short period of time as 
specific examples of utilizing AI for basic administrative services 

• “Provide strong support for AI-based smart city initiatives by local governments” 
• “Position the improvement of AI literacy in the public education curriculum in anticipation of 

the AI native era, when active use of AI in daily socioeconomic activities will be the norm”58, 59 

The AI White Paper builds on Japan’s AI Strategy 2022, released in April 2022 by the Secretariat 
of Science, Technology and Innovation Policy within the Cabinet office. The AI Strategy 2022 sets 
forth five strategic objectives for AI development in Japan:  

• “A technological infrastructure that will enable Japan to protect its people in the face of 
imminent crises such as pandemics and large-scale disasters” 

• “Japan should become the world's most capable country in the AI era by developing human 
resources” 

• “Japan should become a top runner in the application of AI in real-world industries” 
• “In Japan, a series of technology systems to realize a sustainable society with diversity is 

established and a mechanism to operate them is realized” 
• “Japan should lead in building an international network in the AI field for research, education 

and social infrastructure”60 

INDIA 

In April 2023, India’s Ministry of Electronics and Information Technology announced that the 
Indian government “is not considering bringing a law or regulating the growth of artificial 
intelligence in the country.” The ministry referred to AI as a “kinetic enabler of the digital 
economy.”61, 62 In February 2023, the Indian government announced the establishment of three 
new Centers of Excellence for Artificial Intelligence.63 

In 2021, Nitii Ayog published a Responsible AI/AIforALL report, proposing seven “principles for 
the responsible management of AI systems: 1. Safety and Reliability 2. Equality  
3. Inclusivity and Non-discrimination 4. Privacy and Security 5. Transparency 6. Accountability 7. 
Protection and Reinforcement of Positive Human Values.”64  In 2018, Nitii Ayog released an AI 
Strategy calling for investment in education and training, privacy protections and use of AI across 
the value chain.65 The Indian Government maintains an AI website at https://indiaai.gov.in/.66, 67 
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Chapter 12:  

FINDINGS AND RECOMMENDATIONS 
A. Findings 
1. Artificial intelligence is currently contributing to climate change 

mitigation in important ways. AI tools play a central role in 
monitoring methane emissions and deforestation; in integrating 
solar and wind power into electric grids; in improving the energy 
efficiency of industrial operations; in optimizing agricultural 
practices to reduce emissions and increase yields; and much 
more. 

2. Artificial intelligence has the potential to make significant 
additional contributions to climate change mitigation in the 
years ahead. Areas in which artificial intelligence could make 
significant contributions include greenhouse gas emissions 
monitoring; decarbonization of the power sector; the discovery of 
novel materials; and reducing emissions from manufacturing, the food system 
and road transport.   

3. Artificial intelligence is not a panacea when it comes to climate change. Significant changes 
beyond the scope of artificial intelligence will be required to achieve net zero emissions. AI does 
not build infrastructure, move molecules or shift supply chains. While emissions reduction from 
the use of AI may be substantial, these savings alone cannot deliver deep decarbonization. 

4. The lack of trained and experienced personnel is a critical barrier to the use of AI for climate 
mitigation. More computer programmers and data engineers with the skills to create AI 
applications for climate mitigation are needed. Equally important, policymakers, business 
leaders, factory operators, climate professionals and many others need greater familiarity with 
the potential for AI to contribute to their work and risks posed by AI. 

5. The lack of access to high-quality data is a critical barrier to the use of AI for climate 
mitigation. Successful AI applications are built on data that is available, accessible, and 
standardized. Poorly measured and non-standardized data will limit the quality of AI 
development, while private ownership and the cost of accessing data will limit the scale of AI 
deployment. In addition, current limits of data gathering may introduce bias to AI analyses and 
conclusions. Strong policy, investment in education, and public sector action will be needed to 
overcome these barriers.  
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6. Other barriers to the use of AI for climate mitigation include cost, lack of available computing 
power and institutional issues. More resources are needed for training programs, RD&D and 
other purposes. Some promising ideas may falter from lack of access to the computing power 
needed to fully develop them. Many organizations working on climate mitigation – including 
government agencies, businesses and NGOs – are only beginning to incorporate AI into their 
operations and organizational structures.  

7. Significant resources—by governments, corporations and other stakeholders—will be 
required for AI to reach its potential in helping mitigate climate change.  
Providing the human resources needed will require hiring and mission priority. Expansion of 
both funding and personnel are essential for delivering climate solutions at scale. 

8. Risks of using AI include bias, invasions of privacy and security issues. These risks exist when 
using AI for climate mitigation. Bias in AI data and algorithms can lead to injustice, failure to 
achieve program objectives, unneeded expense and many other harmful outcomes. Failures to 
build in privacy safeguards can lead to unauthorized data sharing, personal identification and 
surveillance. Negligence or misuse of AI technologies can lead to accidents and serious security 
problems.  

9. Greenhouse gas emissions from the computing infrastructure for AI are currently modest – 
significantly less than 1% of the global total. Better data collection and assessment 
methodologies are needed to provide a more precise estimate with high confidence.  

10. The amount of future greenhouse gas emissions from AI computing infrastructure is highly 
uncertain. Such emissions could rise or fall in the years ahead. Future greenhouse gas emission 
from computing operations for AI depend on a number of factors, including: (i) the processes 
used to manufacture AI computing equipment, (ii) the energy efficiency of AI computing 
equipment, (iii) optimization techniques used to reduce the size of AI models, (iv) the use of 
zero carbon electricity in AI operations, and (v) demand for AI applications. Each of these is 
highly uncertain. 
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B. Recommendations 
1. Artificial intelligence tools should be integrated into many 

aspects of climate change mitigation. Government agencies 
should use AI tools in policy making and funding decisions. 
Businesses should use AI tools in sustainability programs. All 
institutions with a role in climate mitigation should examine 
opportunities for AI to support their mission and identify 
priority areas in which AI could contribute.  

2. AI skills-development and capacity-building should be a 
priority in all institutions with a role in climate mitigation.  

A. Educational institutions at all levels should offer 
courses relevant to AI. This should include basic skills 
development in primary and secondary schools, more advanced 
courses in universities and continuing education for professionals of all 
kinds. Academic institutions should develop classes, internships, certification programs and 
executive training programs that provide familiarity with AI.  

B. Governments and foundations should launch AI-climate fellowship programs. These 
programs should identify promising students (from developing countries in particular) and 
fund fellowships in AI and climate-focused topics. 

C. Government agencies with responsibility for climate issues should regularly review the 
capabilities of their staffs with respect to AI. The goals should be to continually enhance 
these capabilities and ensure that opportunities for AI to advance their mission are 
recognized and accurately evaluated.   

D. All organizations working on climate mitigation should require minimum AI literacy from a 
broad cross-section of employees. Understanding of AI’s capabilities and experience 
working with AI will contribute to employees’ impact and effectiveness in the years ahead. 
Training and education are essential. 

3. Governments should assist in the development and sharing of data for AI applications that 
mitigate climate change. 

A. Governments should systematically consider opportunities to generate and share data 
that may be useful for climate mitigation. This should include data with respect to weather 
forecasting, electricity generation and use, manufacturing, hydrocarbon production and 
consumption, and transport. 

B. Governments should establish policies to promote standardization and harmonization of 
climate and energy-transition data. These policies should include: (i) data management 
guidelines such as the “FAIR Guiding Principles” (Findability, Accessibility, Interoperability 
and Reusability), (ii) data standardization and harmonization requirements in connection 
with government-funded RD&D, (iii) measures to ensure transparency, including access to 
metadata as well as core data, and (iv) funding for data standardization organizations and 
activities. 
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C. Governments should establish climate data task forces composed of key stakeholders and 
experts. The UK’s Energy Data Task Force provides a good model. The climate data task 
forces should start by identifying potential barriers to data access. They should plan ways to 
federate, share and anonymize data for AI climate applications.  

4. Companies with datasets relevant to climate change mitigation should consider sharing 
portions of those datasets publicly. Public release of a company's datasets can provide direct 
benefits to that company by encouraging development of algorithms helpful to the company, 
attracting AI talent and facilitating integration with related datasets. Public release may provide 
broader social benefits as well. In releasing datasets, companies must anonymize and strictly 
protect personally identifiable information.  

5. Governments should provide substantial funding for the development and application of AI 
tools for climate mitigation.  

A. Government funding for AI in the climate area should focus on emissions reduction 
potential, not just new AI methods. Innovations in AI methodologies are important but may 
not be required for high-impact climate mitigation programs. Some funding programs 
should make emissions reduction potential using AI a priority selection criterion.  

B. Governments should help increase the availability of computing power for climate 
change-related AI projects. They should do so by (i) investing in computing infrastructure, 
(ii) soliciting proposals for projects that use AI for climate change mitigation, and (iii) making 
computing power available without cost for the proposals that offer the greatest potential 
benefits. This could include solicitations from the private sector in partnership with 
governments.  

6. All government agencies with responsibility for climate change, including environment and 
energy ministries, should create an Artificial Intelligence Office, with responsibility for 
assessing opportunities, barriers and risks with respect to AI in all aspects of the agency’s 
mission. These agencies should also consider (i) hiring a Special Advisor to the head of the 
agency, with responsibility for advising the head on all matters related to AI, (ii) creating a unit 
to improve AI skills throughout the organization; and (iii) launching a strategic planning process 
to consider ways that topics related to AI can best be addressed within the ministry on an 
ongoing basis. 

7. Electric utilities should be incentivized to deploy artificial intelligence, with regulated returns 
for investments in AI and other tools. Governments should provide utilities, generators and 
balancing authorities with financial incentives and technical support to integrate AI into grid 
systems. These programs should recognize the significant benefits AI tools can provide in grid 
planning as well as risks related to the use of AI in grid operations.  

8. Governments should launch international platforms to support cooperative work on AI for 
climate change mitigation.  

A. One or more member countries should launch a Clean Energy Ministerial initiative on AI 
and climate mitigation.  
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B. The UNFCCC, International Energy Agency and Food and Agriculture Organization, among 
other organizations, should build AI-for-climate issues centrally into their work programs. 

C. One or more global organizations should be tasked with helping to reconcile any 
conflicting AI-enabled data on GHG emissions. The International Methane Emissions 
Observatory (IMEO) could fulfill this role with respect to methane emissions. The World 
Meteorological Organization (WMO) and Food and Agriculture Organizations (FAO) could 
fulfill this role for CO2 and some other GHG emissions datasets. Alternatively, a single new, 
centralized organization could be set-up to serve as a one-stop clearinghouse for all AI-
enabled GHG emissions data.  

9. Governments should work to minimize greenhouse gas emissions from AI’s computing 
infrastructure. This should include (i) investing in RD&D on energy-efficient AI algorithms and 
hardware; (ii) requiring reporting on GHG emissions in all government-funded AI work; (iii) 
prioritizing AI systems with low greenhouse gas emissions when procuring AI solutions; (iv) 
promoting data centers that emit little or no carbon dioxide through a range of measures 
including regulations, guidelines and/or financial incentives, (v) establishing standardized 
methods for measuring emissions from AI; (vi) requiring AI companies to disclose greenhouse 
gas emissions associated with their operations, on a full lifecycle basis; and (vii) implementing 
ambitious climate programs that incentivize all companies, including AI and data center 
operators, to reduce their greenhouse gas emissions.        

10. Avoiding unfair bias should be a core, high-priority principle guiding the development of all AI 
tools for climate change mitigation. Businesses, governments, and researchers should 
continually pay attention to the possibility of data and algorithmic bias in their work. 
Governments should address the risk of bias with tools including (i) standards for the collection 
of data for AI models, highlighting the importance of diverse and representative data sets; (ii) 
standards with respect to transparency in the development of AI models, giving all stakeholders 
a better opportunity to identify possible biases; (iii) legal frameworks that hold entities 
accountable for biased or discriminatory outcomes resulting from AI applications; (iv) regular 
reviews to consider the potential for bias in all AI programs related to climate change; and (v) 
training programs on the importance of bias recognition and mitigation. 

11. Governments should address privacy risks related to AI-climate programs with data 
protection regulations, cybersecurity standards, oversight boards and techniques that make 
personal data less identifiable. 
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